Hexbyte Glen Cove Is battery recycling environmentally friendly? thumbnail

Hexbyte Glen Cove Is battery recycling environmentally friendly?

Hexbyte Glen Cove

With new solution-based recycling processes, more raw materials can be recovered from batteries. In the picture, a red cobalt salt and a blue-green nickel salt have been obtained from a battery cell. Credit: Valeria Azovskaya/Aalto University

The EU will be home to 30 million electric cars by 2030 and the European Commission is preparing tough targets for recycling these and other batteries. Yet the impacts of battery recycling, especially for the sizeable lithium-ion batteries of the electric cars soon filling our streets, has been largely unstudied.

In a new study, researchers at Aalto University have investigated the environmental effects of a hydrometallurgical recycling process for electric car batteries. Using simulation-based life-cycle analysis, they considered energy and water consumption, as well as process emissions.

“Battery recycling processes are still developing, so their environmental footprints haven’t yet been studied in detail. To be beneficial, recycling must be proven to be more ecological than producing – we can’t just assume recycling is automatically better, even though we know mining the raw materials has large environmental impacts, like high energy and ,” says Mari Lundström, Assistant Professor at Aalto University.

Battery recycling often uses smelting, which typically loses lithium and other raw materials. Novel hydrometallurgical processes, which separate battery metals from waste by dissolution, enable the recovery of all metals but consume large amounts of energy and chemicals, and often produce contaminated wastewaters.

According to the results, the carbon footprint of the raw material obtained by the recycling process studied is 38% smaller than that of the virgin raw material. The difference is even greater if copper and aluminum recovered during mechanical pre-treatment are included. The results also point to problem areas.

“Life-cycle analysis identifies the areas where recycling can be improved. For example, we noticed that using as a neutralizing chemical significantly increases the environmental load of our process,” says Marja Rinne, a doctoral student at Aalto University.

This kind of analysis, which the researchers say has been rarely done for battery recycling, can also be done before new processes are taken into use. It is useful for determining how certain choices or process parameters affect the environmental impacts of a process, so it can be a beneficial decision-making tool for both industry and policymakers.

“Simulation-based can be used even at the design stage of recycling processes to assess the environmental impacts and find the best possible options,” says Lundström.

The potential benefits of finding the best recycling processes are substantial; the EU aims to recycle 70% of the mass battery waste by the end of the decade. It is also setting targets for specific metals used in batteries: 95% of cobalt, nickel and copper, and 70% of lithium must be recycled by 2030. It is estimated that the global lithium battery recycling market will be worth 19 billion by 2030.

According to Lundström, now is the time to develop alternative recycling methods, as the amount of waste will skyrocket with the rapid growth of .

“We will have a massive need for recycling, and we have to find the most viable and ecological processes. Research into technological innovations and their environmental impact go hand in hand,” she says.

In the study, the team also assessed the industrial scalability of the process and made recommendations on how to best modify the process accordingly.



More information:
Marja Rinne et al, Simulation-based life cycle assessment for hydrometallurgical recycling of mixed LIB and NiMH waste, Resources, Conservation and Recycling (2021). DOI: 10.1016/j.resconrec.2021.105586

Citation:
Is battery recycling environmentally friendly? (2021, March 31)
retrieved 31 March 2021
from https://phys.org/news/2021-03-battery-recycling-environmentally-friendly.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for info

Read More Hexbyte Glen Cove Educational Blog Repost With Backlinks —

Hexbyte Glen Cove Plastic recycling results in rare metals being found in children's toys and food packaging thumbnail

Hexbyte Glen Cove Plastic recycling results in rare metals being found in children’s toys and food packaging

Hexbyte Glen Cove

Dr Andrew Turner. Credit: University of Plymouth

Some of the planet’s rarest metals—used in the manufacture of smartphones and other electrical equipment—are increasingly being found in everyday consumer plastics, according to new research.

Scientists from the University of Plymouth and University of Illinois at Urbana-Champaign tested a range of new and used products including children’s toys, office equipment and cosmetic containers.

Through a number of detailed assessments, they examined levels of rare earth elements (REEs) but also quantities of bromine and antimony, used as flame retardants in electrical equipment and a sign of the presence of recycled electronic .

The results showed one or more REEs were found in 24 of the 31 products tested, including items where unregulated recycling is prohibited such as single-use food packaging.

They were most commonly observed in samples containing bromine and antimony at levels insufficient to effect flame retardancy, but also found in plastics where those chemicals weren’t present.

Having also been found in beached marine plastics, the study’s authors have suggested there is evidence that REEs are ubiquitous and pervasive contaminants of both contemporary and historical consumer and environmental plastics.

The study, published in Science of the Total Environment, is the first to systematically investigate the full suite of REEs in a broad range of consumer plastics.

While they have previously been found in a variety of environments—including , soils and the atmosphere—the study demonstrates the wide REE contamination of the “plastisphere” that does not appear to be related to a single source or activity.

Dr. Andrew Turner, Associate Professor (Reader) in Environmental Sciences at the University of Plymouth and the study’s lead author, said: “Rare earth elements have a variety of critical applications in modern electronic equipment because of their magnetic, phosphorescent and electrochemical properties. However, they are not deliberately added to plastic to serve any function. So their presence is more likely the result of incidental contamination during the mechanical separation and processing of recoverable components.

“The health impacts arising from chronic exposure to small quantities of these metals are unknown. But they have been found in greater levels in food and tap water and certain medicines, meaning plastics are unlikely to represent a significant vector of exposure to the general population. However, they could signify the presence of other more widely known and better-studied chemical additives and residues that are a cause for concern.”

The research is the latest work by Dr. Turner examining the presence of toxic substances within everyday consumer products, marine litter and the wider environment.

In May 2018, he showed that hazardous chemicals such as bromine, antimony and lead are finding their way into food-contact items and other everyday products because manufacturers are using recycled electrical equipment as a source of black plastic.

His work was part of a successful application by the University to earn the Queen’s Anniversary Prize for Higher and Further Education for its pioneering research on microplastics pollution.

It also builds on previous work at the University, which saw scientists blend a smartphone to demonstrate quantities of rare or so-called ‘conflict’ elements in each product.



More information:
Andrew Turner et al, Rare earth elements in plastics, Science of The Total Environment (2021). DOI: 10.1016/j.scitotenv.2021.145405

Citation:
Plastic recycling results in rare metals being found in children’s toys and food packaging (2021, February 17)
retrieved 18 February 2021
from https://phys.org/news/2021-02-plastic-recycling-results-rare-metals.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private

Read More Hexbyte Glen Cove Educational Blog Repost With Backlinks —