Hexbyte Glen Cove Big data: IPK researchers double accuracy in predicting wheat yields thumbnail

Hexbyte Glen Cove Big data: IPK researchers double accuracy in predicting wheat yields

Hexbyte Glen Cove

By increasing population sizes, an international team of scientists led by IPK Leibniz-Institute was able to double the prediction accuracy for wheat yield. Credit: IPK/ Christoph Martin

The enormous potential of Big Data has already been demonstrated in areas such as financial services and telecommunications. An international team of researchers led by the IPK Leibniz Institute has now tapped the potential of big data for the first time on a large scale for plant research. To this end, data from three projects were used to increase the predictive accuracy for yield in hybrid varieties of wheat.

“We were able to draw on the largest dataset published to date, which contains information from almost a decade of wheat research and development,” says Prof. Dr. Jochen Reif, Head of the Breeding Research Department at IPK. The results, which could herald a new era for , have now been published in the magazine Science Advances.

Finally, data on more than 13,000 genotypes tested in 125,000 yield plots were analyzed. For comparison: In a breeding program, are tested in 20,000 yield plots every year. “It was clear to us that we would have to increase the population sizes in order to ultimately develop robust predictive models for yield,” says Prof. Dr. Jochen Reif, “so in this case it was really once: ‘a lot goes a long way.'” The effort was worth it, he said. “We were able to double the predictive accuracy for yield in our study.”

The research team used data from the two previous projects HYWHEAT (funded by the Federal Ministry of Research and Education) and Zuchtwert (funded by the Federal Ministry of Food and Agriculture) as well as from a program of the seed producer KWS. Basically, the challenge in such studies is to prepare the information to a uniform quality level and thus enable a common analysis. “Since we were responsible for the designs of the experiments from the start, we were able to plan them in such a way that a small proportion of the same genotypes were always tested across the projects, thus enabling an integrated analysis in the first place,” says Prof. Dr. Jochen Reif.

The scientist is firmly convinced that it pays off to use Big Data for plant breeding and research. “We have ultimately worked on the future of all of us,” says the IPK scientist. “We have succeeded in showing the potential of Big Data for breeding yield-stable varieties in times of climate change.”

According to Prof. Dr. Jochen Reif, the current model study has a significance that goes far beyond one crop type and hopefully heralds a cultural change in breeding. “We were able to show the great benefits of Big Data for plant breeding. However, the possibilities for this are only possible through a trusting cooperation of all stakeholders to share data and master the challenges of the future together.”

Ultimately, this is also the entry point for the use of artificial intelligence (AI). “The successful use of AI also stands and falls in plant breeding and research with curated and comprehensive data. Our current study is an important door opener for this path.”



More information:
Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat, Science Advances (2021). DOI: 10.1126/sciadv.abf9106

Provided by
Leibniz Institute of Plant Genetics and Crop Plant Research

Citation:
Big data: IPK researchers double accuracy in predicting wheat yields (2021, June 11)
retrieved 12 June 2021
from https://phys.org/news/2021-06-big-ipk-accuracy-wheat-yields.html

Read More Hexbyte Glen Cove Educational Blog Repost With Backlinks —

Hexbyte Glen Cove Heat stress in U.S. may double by century's end thumbnail

Hexbyte Glen Cove Heat stress in U.S. may double by century’s end

Hexbyte Glen Cove

Potential heat stress risk due to combined climate and population projections. Credit: Mukherjee et al. (2021) Earth’s Future

Periods of extremely high heat are projected to double across the lower 48 states by 2100 if the world continues to emit high levels of greenhouse gases, according to a new study in Earth’s Future, an American Geophysical Union journal.

The will be felt most strongly in areas with growing populations. The Pacific Northwest, central California and the Great Lakes region could experience as much as a threefold increase compared to the past 40 years. Heat stress occurs when both the temperature and relative humidity get high enough that the can’t rid itself of the excess heat, leading to strokes, heat cramps and other health problems.

“Without doing any mitigation strategies, the impact of heat stress is likely to increase,” said Ashok Mishra, a at Clemson University and an author of the U.S. National Science Foundation-funded study.

Human-driven climate change is leading to an average increase in temperatures across the world. However, people don’t necessarily notice a slow, even warming as much as an extreme event.

Mishra and co-authors wanted to see how heat stress would increase at the same time as a general increase in temperature and . They assumed that while humans may experience higher temperatures on average in many areas, people will acclimatize to the new normal, but extremely index peaks, above even the yearly median values, will continue to have negative impacts on human health.

While previous research has usually examined how extreme heat events may increase in severity, frequency and duration, most studies have looked at one of these in isolation. Mishra and his colleagues calculated how all these might increase together in the future under a high emissions scenario.

Bruce Hamilton, a program director in NSF’s Directorate for Engineering, added that “the research underscores how vitally important it is to implement effective mitigation measures.”



More information:
Sourav Mukherjee et al, Anthropogenic Warming and Population Growth May Double US Heat Stress by the Late 21st Century, Earth’s Future (2021). DOI: 10.1029/2020EF001886

Citation:
Heat stress in U.S. may double by century’s end (2021, June 8)
retrieved 8 June 2021
from https://phys.org/news/2021-06-stress-century.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Read More Hexbyte Glen Cove Educational Blog Repost With Backlinks —