Researchers find that traded species have distinctive life histories with extended reproductive lifecycles

Hexbyte Glen Cove

% %item_read_more_button%% Hexbyte Glen Cove Educational Blog Repost With Backlinks — #metaverse #vr #ar #wordpress

The impact of white-tailed deer on New Jersey farming

Credit: CC0 Public Domain

A small group of New Jersey farmers lost nearly $1.3 million to deer damage in 2019, according to a new report by Rutgers Cooperative Extension (RCE) and the Rutgers New Jersey Agricultural Experiment Station (NJAES).

In the report, “White-Tailed Deer and the Hidden Costs to Farmers’ Livelihoods: A Case Study of New Jersey Stories,” researchers conducted in-depth case studies of 27 farmers about their experiences, some dating back to the 1960s, with regarding environmental damage, safety concerns, management challenges and impacts to operations as the number of deer has grown.

Densities of 10 deer per square mile are recommended to maintain social, economic and ecosystem integrity. But for the farms included in the case studies, deer density estimates range from 60-239 deer per square mile, according to a study done by Steward Green for the New Jersey Farm Bureau.

Interviews were conducted between October 2020 and March 2021 with farmers from Atlantic, Burlington, Cape May, Cumberland, Salem, Hunterdon, Mercer, Monmouth, Passaic, Somerset and Warren counties who collectively owned 4,185 acres and rented 8,769 acres.

They “conservatively estimated” $1.3 million includes deer damage to and reduced yields ($520,940) and deer-related “hidden costs” that can be assigned a dollar value ($755,200). Crop damage from other wildlife species accounted for additional losses ($97,749).

Other impacts include abandoning fields, not being able to grow preferred crops, replanting damaged crops, changing rotations, weeds competing with crops, using more fertilizers and herbicides, soil damage, time and money spent on management activities, and the emotional toll.

But not all impacts can be assigned a dollar value, said Joseph Paulin, a report co-author and conservation expert with RCE and NJAES. The report includes personal stories of how families have been significantly impacted by deer.

“It used to get kind of depressing. A few weeks before Christmas, bucks would come in rubbing right before you were about to sell the trees. That’s a loss of $35,000 per year,” said one farmer.

“Hidden costs are substantial and for many caused greater than direct deer destruction to crops,” said Nazia Arbab, a report co-author and assistant professor in the Department of Agricultural, Food and Resource Economics at Rutgers. 

The report provides recommendations for improving deer management in the state, including raising public awareness, land access, management in suburban areas and on public lands, and more venison donation programs to help local foodbanks.

“Such knowledge is essential for expanding and enhancing deer management and future policy development,” said report co-author Brian Schilling, director of Rutgers Cooperative Extension.

“In many areas, especially around farms, there needs to be more balance,” said Paulin. “It is important to ensure there is always a healthy deer population while working towards minimizing safety concerns and impacts to farms and forests throughout the state.”



More information:
The report, “White-Tailed Deer and the Hidden Costs to Farmers’ Livelihoods: A Case Study of New Jersey Stories,” is available as a PDF.

Citation:
The impact of white-tailed deer on New Jersey farming (2022, March 28)
retrieved 29 March 2022
from https://phys.org/news/2022-

% %item_read_more_button%% Hexbyte Glen Cove Educational Blog Repost With Backlinks — #metaverse #vr #ar #wordpress

Hexbyte Glen Cove Discovery of new geologic process calls for changes to plate tectonic cycle thumbnail

Hexbyte Glen Cove Discovery of new geologic process calls for changes to plate tectonic cycle

Hexbyte Glen Cove

Elements of a newly discovered process in plate tectonics include a mass (rock slab weight), a pulley (trench), a dashpot (microcontinent), and a string (oceanic plate) that connects these elements to each other. In the initial state, the microcontinent drifts towards the subduction zone (Figure a). The microcontinent then extends during its journey to the subduction trench owing to the tensional force applied by the pull of the rock slab pull across the subduction zone (Figure b). Finally, the microcontinent accretes to the overriding plate and resists subduction due to its low density, causing the down-going slab to break off (Figure c). Credit: Erkan Gün/University of Toronto

Geoscientists at the University of Toronto (U of T) and Istanbul Technical University have discovered a new process in plate tectonics which shows that tremendous damage occurs to areas of Earth’s crust long before it should be geologically altered by known plate-boundary processes, highlighting the need to amend current understandings of the planet’s tectonic cycle.

Plate tectonics, an accepted theory for over 60 years that explains the geologic processes occurring below the surface of Earth, holds that its outer shell is fragmented into continent-sized blocks of solid rock, called “plates,” that slide over Earth’s mantle, the rocky inner layer above the planet’s core. As the plates drift around and collide with each other over million-years-long periods, they produce everything from volcanoes and earthquakes to and deep ocean trenches, at the boundaries where the plates collide.

Now, using supercomputer modelling, the researchers show that the plates on which Earth’s oceans sit are being torn apart by massive tectonic forces even as they drift about the globe. The findings are reported in a study published this week in Nature Geoscience.

The thinking up to now focused only on the geological deformation of these drifting plates at their boundaries after they had reached a , such as the Marianas Trench in the Pacific Ocean where the massive Pacific plate dives beneath the smaller Philippine plate and is recycled into Earth’s mantle.

The new research shows much earlier damage to the drifting plate further away from the boundaries of two colliding plates, focused around zones of microcontinents—continental crustal fragments that have broken off from main continental masses to form distinct islands often several hundred kilometers from their place of origin.

“Our work discovers that a completely different part of the plate is being pulled apart because of the subduction process, and at a remarkably early phase of the tectonic cycle,” said Erkan Gün, a Ph.D. candidate in the Department of Earth Sciences in the Faculty of Arts & Science at U of T and lead author of the study.







Elements of a newly discovered process in plate tectonics include a mass (rock slab weight), a pulley (trench), a dashpot (microcontinent), and a string (oceanic plate) that connects these elements to each other.In the initial state, the microcontinent drifts towards the subduction zone (Figure a).The microcontinent then extends during its journey to the subduction trench owing to the tensional force applied by the pull of the rock slab pull across the subduction zone (Figure b).Finally, the microcontinent accretes to the overriding plate and resists subduction due to its low density, causing the down-going slab to break off. Credit: Erkan Gün/University of Toronto

The researchers term the mechanism a “subduction pulley” where the weight of the subducting portion that dives beneath another tectonic plate, pulls on the drifting ocean plate and tears apart the weak microcontinent sections in an early phase of potentially significant damage.

“The damage occurs long before the microcontinent fragment reaches its fate to be consumed in a subduction zone at the boundaries of the colliding plates,” said Russell Pysklywec, professor and chair of the Department of Earth Sciences at U of T, and a coauthor of the study. He says another way to look at it is to think of the drifting ocean plate as an airport baggage conveyor, and the microcontinents are like pieces of luggage travelling on the conveyor.

“The conveyor system itself is actually tearing apart the luggage as it travels around the carousel, before the luggage even reaches its owner.”

The researchers arrived at the results following a mysterious observation of major extension of rocks in alpine regions in Italy and Turkey. These observations suggested that the tectonic plates that brought the rocks to their current location were already highly damaged prior to the collisional and mountain-building events that normally cause deformation.

“We devised and conducted computational Earth models to investigate a process to account for the observations,” said Gün. “It turned out that the temperature and pressure rock histories that we measured with the virtual Earth models match closely with the enigmatic rock evolution observed in Italy and Turkey.”

According to the researchers, the findings refine some of the fundamental aspects of and call for a revised understanding of this fundamental theory in geoscience.

“Normally we assume—and teach—that the ocean plate conveyor is too strong to be damaged as it drifts around the globe, but we prove otherwise,” said Pysklywec.



More information:
Erkan Gün et al, Pre-collisional extension of microcontinental terranes by a subduction pulley, Nature Geoscience (2021). DOI: 10.1038/s41561-021-00746-9

Citation:
Discovery of new geologic process calls for changes to plate tectonic cycle (2021, May 11)
retrieved 12 May 2021
from https://phys.org/news/2021-05-discovery-geologic-plate-tectonic.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Read More Hexbyte Glen Cove Educational Blog Repost With Backlinks —