Hexbyte Glen Cove
The research utilized a comprehensive multi-omics approach, analyzing proteomic, transcriptomic, and metabolomic data across six stages of flower development in Chinese Cymbidium orchids. The study revealed that GA and ABA are central regulators in the floral bud dormancy and activation process.
Transcriptome and proteome analyses identified 10 gene modules with crucial roles in these stages. Early-stage gene clusters were primarily associated with flowering time regulation and meristem determination, while late-stage clusters were linked to hormone signaling pathways.
The metabolomic analysis identified 69 potential hormones, highlighting GA and ABA as key regulatory hubs. Exogenous GA application accelerated bud elongation and upregulated flower development genes, whereas ABA application prolonged dormancy. Functional experiments confirmed that GA promotes floral bud growth, while ABA and its inhibitors modulate dormancy duration.
Additionally, CsAPETALA1 (CsAP1) was identified as a target of ABA, influencing floral bud activation and development. These findings suggest a complex interplay between GA and ABA in orchestrating the floral transition, providing valuable insights for horticultural practices.
Dr. Fengxi Yang, the lead researcher, emphasized the significance of their findings, “Understanding the hormonal regulation of floral development in Chinese Cymbidium orchids offers new perspectives on managing flowering cycles in ornamental plants. Our study highlights the antagonistic roles of gibberellin and abscisic acid in bud dormancy and activation, which could lead to innovative approaches in horticulture. By manipulating these hormones, we can potentially enhance flowering efficiency and quality in various orchid species, benefiting both commercial cultivation and conservation efforts.”
The insights gained from this study have significant implications for horticultural practices and commercial orchid cultivation. By understanding the hormonal control of flower development, growers can manipulate GA and ABA levels to optimize flowering times and improve floral quality.
This knowledge can also aid in the development of new orchid varieties with desired blooming characteristics. Additionally, the study’s findings contribute to broader botanical research, offering a framework for exploring hormonal interactions in other perennial plants, thus enhancing agricultural productivity and sustainability.
More information:
Sagheer Ahmad et al, Integrated proteomic, transcriptomic, and metabolomic profiling reveals that the gibberellin–abscisic acid hub runs flower development in the Chinese orchid Cymbidium sinense, Horticulture Research (2024). DOI: 10.1093/hr/uhae073
Provided by
TranSpread
Citation:
Orchid awakening: Unveiling the hormonal choreography behind flower development (2024, June 25)
retrieved 26 June 2024
from https://phys.org/new
% %item_read_more_button%% Hexbyte Glen Cove Educational Blog Repost With Backlinks — #metaverse #vr #ar #wordpress
Subscribe to our newsletter
Collect visitor’s submissions and store it directly in your Elementor account, or integrate your favorite marketing & CRM tools.