Hexbyte Glen Cove
This article has been reviewed according to Science X’s
editorial process
and policies.
Editors have highlighted
the following attributes while ensuring the content’s credibility:
fact-checked
peer-reviewed publication
proofread
by TranSpread
The study presents the first high-quality, haplotype-resolved genome assembly for Mentha suaveolens, with a genome size of 414.3 Mb and 31,251 coding genes. By integrating data from various sequencing platforms, the researchers resolved two complete haplotypic assemblies, each nearly fully annotated for telomeres and centromeres.
Notably, the analysis revealed 41,135 structural variations, including deletions, insertions, duplications, and translocations, many of which impact genes involved in terpenoid biosynthesis.
One significant finding is the predominance of piperitenone oxide among the volatile compounds produced by M. suaveolens, as opposed to menthol, which is more common in other Mentha species.
The study identified three genes encoding isopiperitenone reductase (ISPR), a key enzyme in menthol biosynthesis, but found that their low transcription levels likely lead to the accumulation of piperitenone oxide instead.
Dr. Chi Song, one of the leading researchers, stated, “The completion of the gap-free genome for Mentha suaveolens represents a significant milestone in plant genomics. This comprehensive genetic map provides a foundation for exploring the molecular mechanisms underlying the unique properties of pineapple mint, which could lead to innovative applications in medicine and agriculture.”
The gap-free genome assembly of Mentha suaveolens paves the way for genetic research and breeding to enhance its medicinal and aromatic qualities. Understanding the genetic basis of terpenoid biosynthesis enables targeted strategies to optimize valuable compounds like piperitenone oxide.
This research advances plant genomics and has significant potential to improve the cultivation and commercial value of Mentha species.