Hexbyte Glen Cove
In the GDE, the catalyst layer (CL) is the main place for the catalytic reaction, which normally contains the catalyst, the catalyst carrier, and the ionomer. The preparation of CLs by ink-based methods usually suffers from inhomogeneous distribution of ionomer, which affects the transport of ions and CO2.
Therefore, rational optimization of the spatial distribution of ionomer is beneficial to promote mass transfer and enhance catalytic performance. In addition to methods such as adjusting the solvent polarity and improving the interaction between the catalyst and ionomer, there is still a demand to develop a more proactive and controllable approach to further optimize the distribution of ionomer to achieve good performance for the practical application of CO2RR systems.
Therefore, the optimized GDEs possessed a relatively low cell voltage (about 3.3 V at 300 mA cm−2) and a high CO Faradaic efficiency of over 90% even at a high current density of 600 mA cm−2. This electrode also achieves stable catalysis at a current density of 300 mA cm−2 for more than 220 h. It is envisioned that the information gathered in this study will inspire the optimal design of the GDEs, thus providing a reference for realizing the practical application of CO2RR.
More information:
Xiaowei Du et al, Confinement of ionomer for electrocatalytic CO2 reduction reaction via efficient mass transfer pathways, National Science Review (2023). DOI: 10.1093/nsr/nwad149
Citation:
Building efficient mass transfer pathways for electrocatalytic carbon dioxide reduction reaction (2023, July 24)
retrieved 25 July 2023
from https://phys.org/news/2023-07-efficient-mass-pathways-electrocatalytic-carbon.html
% %item_read_more_button%% Hexbyte Glen Cove Educational Blog Repost With Backlinks — #metaverse #vr #ar #wordpress
Subscribe to our newsletter
Collect visitor’s submissions and store it directly in your Elementor account, or integrate your favorite marketing & CRM tools.