Hexbyte – Glen Cove – News Why Kodak Willingly Ignored the Future of Photography -Hexbyte Glen Cove News

Hexbyte – Glen Cove – News Why Kodak Willingly Ignored the Future of Photography -Hexbyte Glen Cove News

Hexbyte – Glen Cove – News

Once a juggernaut of the photography industry, Kodak missed the boat when cameras shifted to digital. Cheddar published this interesting 7.5-minute video that looks at how the company that created the first digital camera in 1975 went bankrupt in 2012.

If you’re interested in this topic, here’s a deeper look at why Kodak died while Fujifilm thrived.

Read More

Ancient-human species mingled in Siberia’s hottest property for 300,000 years - Hexbyte Inc. - Glen Cove

Ancient-human species mingled in Siberia’s hottest property for 300,000 years – Hexbyte Inc. – Glen Cove

Ancient-human species mingled in Siberia’s hottest property for 300,000 years

Neanderthals and Denisovans both called Denisova Cave home — and Homo sapiens might have, too.

Ewen Callaway

4 scientists excavating Pleistocene deposits in East Chamber of Denisova Cave, 2010.
Denisova cave in southern Siberia has been a rich source of ancient-human remains.Credit: IAET SB RAS

Neanderthals and Denisovans might have lived side by side for tens of thousands of years, scientists report in two papers in Nature1,2.

The long-awaited studies are based on the analysis of bones, artefacts and sediments from Denisova Cave in southern Siberia, which is dotted with ancient-human remains. They provide the first detailed history of the site’s 300,000-year occupation by different groups of ancient humans.

“We can now tell the whole story of the entire cave, not just bits and pieces,” says Zenobia Jacobs, a geochronologist at the University of Wollongong, Australia, who co-led one of the studies.

Ancient-human hotspot

Soviet archaeologists began unravelling the story of Denisova Cave, at the foot of the Altai Mountains, in the early 1980s. Since then, scientists have found the fragmentary remains of nearly a dozen ancient humans at the site. The cave became world famous in 2010, after an analysis of the DNA from a tiny hominin finger bone found that the creature was distinct from both modern humans and Neanderthals3. It belonged to a previously unknown hominin group, later named Denisovans.

Additional sequencing of the DNA in bone remains from the cave found that Denisovans were a sister group to Neanderthals, and might once have lived across Asia — where they interbred with the ancestors of some humans now living there4.

Last year, the site produced another spectacular discovery: DNA analysis of a long bone fragment revealed the first ever known ‘hybrid’ of two ancient-human groups, a woman — nicknamed Denny — whose mother was a Neanderthal and father a Denisovan5.

Ancient-human species mingled in Siberia’s hottest property for 300,000 years - Hexbyte Inc. - Glen Cove

Dating tangle

Most of the cave’s remains are older than the 50,000-year limit of the radiocarbon dating technique that’s used on organic materials, and efforts to use other methods to date the sediments in which the remains are buried have been hampered by the lack of a good map of the cave’s geological layers. Many scientists worry that disturbances in the cave, such as animal burrows, have scrambled its contents such that remains and artefacts no longer sit in sediments of similar age.

To surmount those challenges, researchers led by Jacobs and Wollongong geochronologist Richard Roberts used a dating technique that determines when individual grains of soil were last exposed to light1. This allowed them to identify regions of the cave in which the soil had been disturbed so that adjacent grains returned wildly different dates. They could then omit those areas when dating sediments in the same geological layer as hominin remains and tools.

The first signs that any ancient-human species had occupied the cave are stone tools — excavated beginning in the 1980s — that were dated to around 300,000 years old (see ‘Cave kin’). But the researchers could not work out whether Denisovans or Neanderthals made them. The cave’s Denisovan remains (including some DNA that leached into the soil) date to between 200,000 years ago and 55,000 years ago, whereas the oldest Neanderthal remains are around 190,000 years old and the youngest date to some 100,000 years ago.

The researchers cannot find out precisely when the groups lived together, or whether they ever shared the cave. But the existence of the hybrid individual — who lived around 100,000 years ago — means that the groups must have lived close enough to each other to meet at that time. Furthermore, Denny’s father harboured a sliver of Neanderthal ancestry, suggesting that his ancestors had previously interbred with Neanderthals.

Initial Upper Palaeolithic pendant being sampled in a lab
Bone pendants and tools were found in the cave’s younger layers and date to between 49,000 and 43,000 years old.Credit: Tom Higham, Univ. Oxford

Who was here?

Homo sapiens might also have lived in the cave, the researchers suggest. Bone pendants and tools — similar to those made by early modern humans in Europe — from the cave’s younger layers date to between 49,000 and 43,000 years old, reports a team led by archaeologists Katerina Douka at the Max Planck Institute for the Science of Human History in Jena, Germany, and Tom Higham at the University of Oxford, UK, in the second Nature paper2.

The researchers dated one hominin bone to around 46,000-50,000 years ago, but could not retrieve any DNA to investigate which species it belonged to.

No other H. sapiens remains from this period, known as the Initial Upper Palaeolithic, have been found in Denisova cave or the wider Altai region. For this reason, the Russian archaeologists who spearhead the site’s excavation have argued that Denisovans made the artefacts, which are more sophisticated than the site’s older stone tools. But Higham would like to see more proof before linking the artefacts to any group. “It’s possible Denisovans could have made the Upper Palaeolithic. It’s possible the Russians are right. At the moment, with the evidence we have, we can’t really be sure,” he says.

Hybrids similar to Denny are another suspect, says Robin Dennell, an archaeologist at the University of Exeter, UK, and author of an accompanying essay on the studies6.

It is also possible that whoever made the artefacts was influenced by contact with H. sapiens, he says. “I would be very surprised if the Initial Upper Palaeolithic at Denisova was made by Denisovans or Neanderthals with no input from our species.”doi: 10.1038/d41586-019-00353-0

Read the related News & Views article: ‘Dating of hominin discoveries at Denisova


A Critical Review on the Assumptions of SETI K. F. Longa * a Initiative for Interstellar Studies, The Bone Mill, New Street, Charfield, GL12 8ES, United Kingdom, kelvin.long@i4is.org Hexbyte Inc. – Glen Cove, NY

A Critical Review on the Assumptions of SETI K. F. Longa * a Initiative for Interstellar Studies, The Bone Mill, New Street, Charfield, GL12 8ES, United Kingdom, kelvin.long@i4is.org Hexbyte Inc. – Glen Cove, NY

Page 1 of 14 A Critical Review on the Assumptions of SETI K. F. Longa * a Initiative for Interstellar Studies, The Bone Mill, New Street, Charfield, GL12 8ES, United Kingdom, kelvin.long@i4is.org * Corresponding Author Abstract The Search for Extraterrestrial Intelligence (SETI) makes certain assumptions which guide all current search programs. To illustrate some, this includes (1) that interstellar flight is not possible (2) that the motivations of interstellar cultures are based largely on anthropomorphic understandings of homo sapiens (3) that the Fermi Paradox and the Drake equation are the starting point (axioms) of all reasoning (4) that definitions of ’life’ are based largely on our understanding of homeostasis (5) that radio waves are the most likely method of interstellar communications (6) that unknown single event source signatures detected in space are not amenable to scrutiny due to the demands of the scientific method to be reproducible (7) that such anomalous signatures are either astronomical or communications based in type, with no consideration for emissions from advanced industrialisation or propulsion and power technology. These assumptions, and others, have guided the SETI community towards a constrained level of thinking that is equivalent to philosophical dogma. In this paper, we unpack these assumptions, and others, and argue that the potential for life and intelligent life in the Cosmos may be much greater than the SETI community currently appears to conclude. It is also argued that more progress in our understanding of our place in the Cosmos, can be made, if the separate disciplines of astronomy, interstellar spacecraft design, SETI, biology and philosophy can work together in a complimentary way. Presented at the 47th IAA Symposium on the Search for Extraterrestrial Intelligence, SETI and Society. Keywords: SETI, Life, Consciousness 1. Introduction This paper is intended to be a constructive contribution to the field of the Search for Extraterrestrial Intelligence (SETI). The author has not traditionally written about this subject before, so it is likely that some of the comments made have already been covered by others. However, it is the hope that some of the comments may be considered sufficiently insightful to spur debate and comment. As an outsider to this subject, two observations about it need to be made. The first is that there is an enormous literature in many journals and books which has given our species a good grasp of the problem philosophically at least. The second is that it is not clear that the current search strategies, derived from historical assumptions, is questioned sufficiently in a way that leads to a renewal of the field and its thinking. Fundamentally, our starting assumptions always seem to be based on the human experience. Although this is logical, it also comes with the risk of overanthropomorphising the problem by assuming that intelligent life is like us, thinks like us, has the same motivations as us, evolved like us and is constructed of the same basic chemistry. In an infinite universe, or a finite universe with an infinite number of universes (multiverse) the possibilities for existence should be immense and not limited only to our experience. It is acknowledged that to speculate outside of our experience, is no different to science fiction, and that the scientific method at least provides us a pathway for penetrating the truths of reality. But if we insist only on verifiable truths predicted in a deterministic way, we are surely to miss out on anomalous data or outliers, which may contain important information about the nature of reality, and thereby the nature of consciousness, intelligence and life. 2. Analysis of Assumptions In this section we discuss some of the assumptions of the SETI program and consider alternative ideas that may be examined as a part of future research efforts. 2.1 Interstellar Flight It has been observed that a perception of the SETI and astronomical communities is that interstellar flight is not possible. It is worth addressing this. The first academic paper to properly address this issue was published by Sheppard in 1952 who concluded “there does not appear to be any fundamental reason why human communities should not be transported to planets around neighbouring stars” [1]. The first comprehensive design study was conducted in the 1970s by members of the British Interplanetary Society and is known as Project Daedalus [2] (See Fig 1). Their motivation was to prove that interstellar flight Page 2 of 14 was not the reasons why we do not observe other intelligent life-forms in the galaxy. The 5 year study of an uncrewed flyby probe encompassed all key spacecraft systems from power and propulsion, from shield erosion due to particle bombardment to navigation and reliability. The 450 tons artificial intelligence payload would be launched to the nearest stars using 50,000 tons of deuterium-helium-3 fuel for use in a two-stage fusion engine travelling at 36,600 km/s or 0.12c and completing its mission in half a century. The team concluded that “we envisage Daedalus-type vehicles being built by a wealthy (compared to today) Solar System wide community, probably sometime in the latter part of the 21st century” [3]. In essence, the argument of the Project Daedalus team was that if they could conceive of a plausible starship design at the outset of the space age (1970s) then in one or two centuries technology would be more mature and so the design becomes more likely. In a post-project review paper published in 1984 the authors concluded “the object was to show that, with reasonable assumptions, interstellar flight is feasible. We who carried out the study are satisfied that objective was achieved….we conclude therefore that interstellar flight is feasible” [4]. Fig. 1. Project Daedalus Concept Design In 2009 a successor to the Project Daedalus study was launched, called Project Icarus [5]. It set out to redesign the Daedalus vehicle but this time to include full orbital insertion around the target star, rather than just a flyby mission. The study is still ongoing but the team has produced dozens of published academic papers addressing all areas relevant to starship design. The team has also produced numerous vehicle designs, some of which are illustrated in Figures 2, 3 and 4 [6, 7, 8]. Many thousands of papers have now been published in the literature addressing different aspects of starship design. There are too many to cite in this paper, but it is worth highlighting a radically different approach to interstellar travel than the reaction engine systems of Daedalus and Icarus. Notably, there has been an effort to come up with designs that minimise or even remove totally the need for on-board fuel. One of these is using beamed energy propulsion. Fig. 2. Project Icarus Resolution Concept Design Fig. 3. Project Icarus Leviathan Concept Design Fig. 4. Project Icarus Firefly Concept Design In the 1980s the physicist Robert Forward first suggested the idea of using lasers and microwaves to push a sail over interstellar distances (See Fig. 5). His concept was known as Starwisp and he did calculations for flyby, rendezvous and even a return journey version [9, 10]. The biggest problem with this technology was the requirement for a large collimating Fresnel lens (e.g. 560,000 tons) to push just a small sub-ton payload to 34,000 km/s or 0.11c. Because the lensing power is also a function of the mass, this system would also require a 65 GW beam just for the flyby mission. Recent efforts by the Initiative for Interstellar Studies have attempted to address this with its Project Andromeda [11]. This is a Gram-scale probe that travels to the nearest stars using a 1.15 GW powered beam from a space based laser. To mitigate the issue of a diverging beam and maintenance of collimation the concept utilizes a segmented lens array as suggested by Landis [12]. A total of ten 95 m radius lens would be required out to 1.8 AU distance Page 3 of 14 Fig. 5. A Starwisp laser-Sail Design Fig. 6. Andromeda Probe laser-Sail Design The latest starship design, which has actually received $100 million in research and development funding, is Breakthrough Starshot [13]. The project aims to send a Gram-scale probe to the nearest stars within two decades, travelling at 60,000 km/s or 0.2c. The key to the success of the mission is the continued miniaturisation of micro-electronics, reducing cost of laser power, increasing laser power and the ability to phase array a group of lasers. The mission architecture uses a ground based beamer. Fig. 7. Breakthrough Starshot laser-Sail Design However you attempt an interstellar mission, one thing that is clear is it will require large masses and enormous amounts of energy somewhere; on the ground or in space. Indeed to go much faster may require something like the relativistic Bussard ramjet utilising the hydrogen of interstellar space as a fusion fuel [14]. In principle such a vehicle could approach the speed of light and cross the known galaxy in a matter of decades [15]. Alternatively, if it was the plan to send large colonies of people this would require world ships, and designs for these exist too [16, 17]. Such vessels would travel at 0.015 – 0.03c and would take several thousands of years to travel between stars. It would also be useful to just mention the possibility of self-replicating artificial intelligence probes also known as von Neumann probes. Many speculate about the existence of such objects and how this is also a part of the human future as we continue to merge with technology. Such ideas were explored by Clarke [18]. We could fill pages with discussions on the numerous concept studies that have been done relating to interstellar spacecraft design. What is clear is that it cannot be said that interstellar travel is not possible and the evidence from the literature does not support that statement for the decades and centuries ahead. It appears to be entirely possible, given enough effort on the technology maturation and funding to support the research. A more detailed review of interstellar propulsion concepts is available elsewhere [19]. Finally, one of the problems with many of these concepts is how to transmit and receive data over interstellar distances. It was the belief of the Project Daedalus study that something like the NASA Cyclops study would be required [20]. This is also likely to be the case for the modern Breakthrough Starshot. The Cyclops study is an interesting project, because it has set the assumptions for the SETI community over the preceding years. Although an excellent project that should be supported, some of its conclusions need revisiting. This includes “It is vastly less expansive to look for and to send signals than to attempt contact by spaceship or by probes” [20]. This is only true up to a point. It is possible to build space reconnaissance missions which deliver high science value, including atmospheric penetrators, surface impactors and even landers which deliver data that a long-range interferometer cannot. This includes “The cost of a system capable of making an effective search, using the techniques we have considered, is on the order of 6 to 10 billion dollars, and this sum would be spent over a period of 10 to 15 years” [20]. It is worth noting that the full-up mission cost for Breakthrough Starshot [13] is projected to be around $10 billion, so is equivalent in expenditure. This includes “The search will almost certainly take years, perhaps decades and possibly centuries” [20]. Breakthrough Starshot is projected to be a two-decade mission. Other starship concepts have mission profiles lasting less than a century. 2.2 Motivations of Interstellar Cultures The SETI program seeks to search for radio or optical laser signals transmitted by an alien species across the vast distances of space. These could be of Page 4 of 14 two types (1) deliberate signals (2) accidental signals. Let us briefly explore both. 2.2.1 Deliberate targeted signals An assumption of searching for such signals has to be that any alien species would possess the same aspirations as Homo sapiens, namely for enquiry, conquest or colonization of other worlds. But there is no reason to think that such characteristics or even moral philosophy would be a universal trait. It is possible that any aliens would in fact take the opposite stance in the interest of survival, and choose to isolate themselves from the eyes of other worlds. They also may not have any interest in us whatsoever, and perhaps it represents an anthropological arrogance to assume that we are interesting. They may not desire to know us, in the same manner that ancient tribes of the Amazon have historically chosen to isolate themselves from modern civilization. Assuming one detected deliberate signals from other worlds, one would then have to ask what their motivation was. Was it conquest and colonization or our worlds or just intellectual curiosity? How do we propose to discriminate the difference and understand their agendas? 2.2.1 Accidental signals Such signals would be caused by technology, such as industrial processes or the emissions from transport machines that are moving through space (i.e. power supply or engines). An interesting possibility is that if we detect these signals, this would then promote a scientific endeavour in our own civilization to research the possible technologies, leading to a process of reverse engineering by interpolation and extrapolation of observed physics, as a form of technological determinism. This was discussed in earlier work [21]. The possibility of detecting technology signatures in deep space has also been discussed by Zubrin [22] in terms of so-called ‘techno-signatures’. The author for example claims that Bremsstrahlung radiation from the plasma confinement systems of fusion devices might be detectable at distance of about 1 light year. 2.3 The Fermi Paradox and the Drake Equation In this section we will address the Fermi Paradox and the Drake equation. A good introduction to both of these subjects is provided by Miller [23] and we will assume that the reader has a basic understanding of these ideas. These are the two central ideas which dominate thinking in this community. Both have had their role to play, but it is probably time to move beyond them and to reframe the debates. 2.3.1 The Fermi Paradox The Fermi Paradox is an observation pointed out over lunch during the 1950s by the physicist Enrico Fermi that we don’t see evidence of alien life outside of the Earth yet it should be expected from a statistical basis, when one examines the type and ages of objects in the galaxy. There are many potential solutions proposed to explain the Fermi. Such as the galaxy is too big to allow interaction within our civilization time, or that we are being deliberately quarantined from other more peaceful species in a so called Zoo hypothesis. It may also be the case that advanced intelligent probes are or have been here but our limited technology is not capable of detecting them. Another favourite is that civilizations reach a critical point in their technological development where they either flourish or destroy themselves in a nuclear war. Large scale natural catastrophes will also impact the number of civilizations in the galaxy and thereby the probability of interaction. The reality is we do not know, and many ideas exist [24]. We begin this by clearly stating what the Fermi Paradox actually is. A paradox apparently exists between our theoretical expectations for intelligent life in the cosmos, based upon our measurements of stellar structure, age, composition, type, evolution, and our observations which are in apparently conflict with this expectation. This suggests straight away that there is something wrong with one or both or our two assertions: (1) that our theoretical models are incorrect (2) that are observations are incorrect. In order to bring them both into alignment, a detailed and rigorous revisiting of these assertions is required. Firstly, we can define a paradox as a statement that apparently contradicts itself, such as a logical paradox which is an invalid argument. A paradox will often have revealed errors in definitions that are assumed to be rigorous. Because of this, it may be better not to see the Fermi problem as a logical paradox, but more of a logical contradiction in terms. That is to say, that in classical logic, a contradiction consists of a logical incompatibility between two or more propositions. It occurs when two conclusions which form the logical, usually opposite inversions of each other. Hence it may be better to reformulate the Fermi Paradox as the Fermi problem. Instead, it is better to look at the Fermi problem, from the standpoint of a mathematical axiom. An axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A mathematical theory consists of an axiomatic system and all its derived theorems. So with the Fermi problem, any statement which asserts the presents of intelligent life in the galaxy is a theorem, which must derive from the axiom that the galaxy is capable of hosting intelligent life in the first place. We know that this this axiom is true, Page 5 of 14 because we are here, and so we represent the manifest evidence for the starting point of reasoning, to be accepted as true without controversy. Given that we exist, we are left to ask do others exist? This then leads to the development of a hypothesis as a proposed explanation for the phenomenon. And in the Fermi problem there are two forms of hypothesis that are proposed. The first hypothesis is that the galaxy is capable of hosting more than one intelligent life form on separate worlds around other stars. The second hypothesis is that we have the technological capability to measure the presence of such intelligent life should it exist. But these are not logical paradoxes, merely mutually exclusive and independent hypothesis which can be tested, in order to develop full theorems. But as we shall see, there are numerous issues with our handling of both hypothesis which make reasonable progress not sensible, due to the logical fallacy of the questions and how they are framed. A simple way to frame the Fermi paradox is as a contraction between our theoretical expectation for intelligent life in the galaxy (based on probability arguments) and our observation that none is observed. When reading the different views about the Fermi problem, what quickly emerges is that the proposed explanations have a pessimistic and an optimistic position. The traditional chauvinism arguments that prevail in the scientific community were advanced by Martin & Bond [25]. Drake-Sagan chauvinism essentially advocates a crowded galaxy [26, 27] Hart-Viewing chauvinism advocates that our species is probably the first intelligence life to arise in the galaxy [28, 29, 30]. One could take these points of view to their logical extreme. It could be argued that the extreme viewpoint of the Drake-Sagan chauvinism might for example be an acceptance of close encounters or alien abduction as a real phenomenon. Similarly, it could be argued that the extreme view point of the Hart-Viewing chauvinism might constitute a belief in a deity (religious) who created only mankind and none others – Mankind is unique. Indeed, might it actually be the case that both phenomenon that exist in our society, are a result of our failure to properly explain our origins, nature, trajectory and destination. Our inability to find others in the universe, to provide a ‘shades of grey’ comparison as a form of mirror up to ourselves, means that we are left in the dark, forcing us to embrace extreme ideas as an explanation for our limited mortality. Such interpretations could assert that we are mortal because the universe is teeming with diverse life-forms and it would not be practical for them all to live eternally. Alternatively, interpretations could assert that this could be because we were created mortal by a God that seeks to prepare us for an after-life. However, in contradiction to this argument, Genta [31] takes the view that a universe that is teeming with life is consistent with the religious views of a God, because to suggest otherwise would imply that God has limits on his creation. This is speculative, but it seems plausible at least that our fascination with the metaphysical (gods, transcendence, ascension) and also the paranormal (ghosts, goblins, aliens), is a direct consequent of our failure to explain the Fermi problem and the conundrum that a limited life species appears to inhabit an expansive cold and empty universe. Left with uncertainties and an information vacuum, we are forced to invent meta-realities. This may be because our imaginations demand it, and using our imagination is a key aspect of our survival dominance by evolution and natural selection. 2.3.2 The Drake Equation The Drake equation, named after its deriver, Frank Drake, has proved a useful tool in framing the discussions about intelligent life in the universe. This has also helped to guide observation programs, in terms of finding parallels to what is on the Earth. The equation is a multiplicative set of terms, the sum total of which gives a probability argument for the likely existence of intelligent life in the universe. However, it makes certain assumptions about life and intelligence which are worth unpacking in the order that the terms are given. This author believes that ‘life’ and ‘intelligence should be treated as separate concepts, but for the purpose of ease of text, we will just use the phrase ‘intelligent life’ in our discussion below. The Drake equation is given by: N = R*fpneflfifcL (1) The term R* is the average rate of star formation in our galaxy. This assumes that intelligent life will only be found around stars. Given that the average distance between stars is around 5 LY in our local neighbourhood, this leaves out a lot of space where we do not consider the emergence of intelligent life likely. However, it is acknowledged that any form of ‘life’ may be dependent upon the energy supply from a star. The term fp is the fraction of those stars that have planets. This assumes that intelligent life will only emerge on planets within a stellar system. The term ne is the average number of planets that can potentially support life per star that has planets. We have absolutely no way of knowing this unless we restrict our assumptions to worlds with water and moderate temperature conditions. The term fl is the fraction of planets that could support life that actually develop life at some point. Again, we have no way of knowing this. Our own Page 6 of 14 investigations of likely planetary objects in our own solar system has been limited (i.e. Venus, Mars, Europa, Enceladus, Titan) The term fi is the fraction of planets with life that actually go onto develop intelligent life such as a civilization. We have no way of knowing this. We could use our own Solar System as an example, in which case the fraction is 1/9 (if we include Pluto), which represents around 10%. The term fc is the fraction of civilizations that develop a technology that releases detectable signs of their existence into space. We have no way of knowing this. The term L is the length of time for which such civilizations release detectable signals into space. Our only baseline comparison for this is for life on Earth. Yet the human society is made up of many rising and falling civilizations and it is not so clear that just assigning a number like 10,000 years is an appropriate position to take. A proper study of the history of human civilizations would show this to be a complicated problem. Finally, the Drake equation does not take into account the diffusion of interstellar civilizations from the point of origin, and also that many species may choose to live in space and not on planets, where the potential for population growth is so much greater. As mentioned, the Drake equation is a wonderful tool for discussing the problem of intelligent life in the Universe as a form of education. But it contains so many large uncertainties, that its actual use to any scientifically informed assessments of the problem is very limited. The only point at which we could place hard numbers on the equation is when we can send space probes to multiple star systems and build up a good sample space to conduct an analysis. Assigning a high confidence level to any assessments (e.g. 5-6 sigma standard deviation) would likely require a survey of dozens of such star systems. 2.4 Definitions of Life Conventionally, astrobiologists talk about a ‘Goldilocks Zone’ also known as a circumstellar habitable zone. The assumption is that any planet within this zone from its parent star would have planetary surface conditions to support liquid water at atmospheric pressure. Too close to the Sun and the radiant energy falling on the planet could be too high to allow for life’s survival or even emergence. Too far from the Sun and the radiant energy could be too low, leading to too cold a condition for life. In terms of looking for life on other planets, there are five types of categories we might consider. Type 1: These are planets which appear to have uninhabitable surfaces but might support a sub-surface biosphere. Type 2: These are planets which appear habitable such as spectroscopic evidence of water and carbon dioxide. Type 3: These are planets for which plausible atmospheric bio-signatures are detected. Type 4: These are planets which appear habitable but also show emissions consistent with our expectations for low level industrialisation (e.g. Pollutants in the atmosphere or chemical depletion of an ozone layer). Type 5: These are planets which have the elements of the other categories but also show strong evidence of the occupation by advanced intelligence due to its activities within its system (e.g. Dyson Spheres). The detection of industrialization on any scale around another planet is termed techno-signatures and in terms of priorities for any future missions this is likely to get our most interest. Most of the focus of the above discussion has been on the life that we know and our assumptions about carbon-based chemistry. Our best understanding to date is that life (that is animals and plants) is distinguished from inorganic matter by homeostasis – a property of a system such as the concentration of a substance in solution that is actively regulated to remain near constant. For example, for mammals like us, this could be through body temperature, the pH level of the extracellular fluids, or the concentration of Sodium, Potassium, Calcium ions and glucose in the blood plasma. We then define life as being composed of cells, which undergo metabolism, can grow, adapt to their environment, respond to stimuli and reproduce. However, in our quest to understand the nature of intelligence in the universe, we have to at least admit the possibility that ‘life’ or ‘living systems’ [32] may be characterised by different combinations of chemistry or even by non-chemical processes. In 1944 the physicist Erwin Schrödinger wrote “living matter, while not eluding the laws of physics as established up to date, is likely to involve other laws of physics hitherto unknown which however once they have been revealed will form just as integral a part of science as the former….life can be defined by the process of resisting the decay to thermodynamic equilibrium” [33]. To illustrate five examples of systems we might study that could exhibit complex behaviour, in a method that is analogous neuron functioning in a human brain, but instead as a kind of networked intelligence, here are three potential ideas: Idea 1 A Space Plasma. A plasma is typically blown off of a star from a stellar wind. It consists of ions and electrons, bound together by electromagnetic fields. For a cloud of plasma that is drifting in deep space for millions of years, provided there is some means of occasional energy transfer through the system, is it possible for some level of self-organization to occur Page 7 of 14 such that it is analogous to the ‘black cloud’ [34] in the famous story by Fred Hoyle? Idea 2 Mycelium fungus. This is a bacterial colony consisting of a mass of branching hyphae and is typically found in soils where it absorbs nutrients from their environment by the secretion of enzymes onto a food source and then breaking down biological polymers into smaller units called monomers. This process is vital for the decomposition of organic material. Is it possible that some material like mycelium could evolve to some level of networked intelligence if it grew to a large enough scale [35]? Idea 3 Conscious Stars. The American physicist Greg Matloff has highlighted the interesting observation that cooler, less massive, redder stars in our stellar neighbourhood revolve around the centre of the Milky Way galaxy faster than their hotter, more massive and bluer stars. This is known as Parenago’s discontinuity. Matloff has suggested that quantum mechanical effects may lend themselves towards a volitional star hypothesis [36]. Idea 4 Phase Shifted Systems. There are two scales by which we measure events in the Universe, this includes spatial and temporal. Human beings tend to exist on the spatial scales of ~m and the temporal scales of ~s. Is it possible that there are radically different lifeforms in the universe that function and indeed think over radically different spatial and temporal scales? In terms of spatial size this could be at the molecular scale or at the galactic scale. In terms of temporal size, this could be at nano-seconds or millions of years. An example of a biological system we may choose to study as a form of analogue would be trees in a forest, which it could be argued exhibit characteristics which may suggest some form of intelligence [37]. As an aside, it is also worth noting that due to the effect of special relativity, any intelligent civilizations in the galaxy will be separated in both space and time anyway, due to the relativistic effects of time dilation [21]. Idea 5 Life on Earth. It is easy to think that Homo sapiens are the most superior highly evolved intelligence on planet Earth, but an examination of our own animal kingdom, such as the Octopus of the Cephalopoda class, is at least suggestive we may not be alone [38]. It is not the purpose of this paper to argue for the credibility of these ideas, but just to illustrate the nature of living systems that may not meet our accepted definitions. These five ideas are just examples of what are currently not on the radar for any future space missions, since they would struggle to simultaneously meet our accepted definitions of ‘life’ and ‘intelligence’. This author suggests that in a universe with a large variety of types of stars and planets, that it may also be possible for there to be a wide variety of intelligent systems. 2.5 Radio Waves as Communication Beacons The current expectation of the SETI community is that any sufficiently advanced intelligence would transmit ‘hello’ signals, perhaps with mathematical encoded data for proof of ‘intelligence’. But we have to question the logic of this thinking. It would seem to this author to be a naive expectation. Any transmitted signals would travel at the speed of light, ~300,000 km/s, and so would take a very long time to transmit between stars. Given this, unless a civilization is within Light Years distance, so that a reply can be received within say years or decades, there is little value to be gained from such a transmission and certainly the possibility of a dialogue is out of the question. The only time a civilization might be expected to send such a transmission, is in the asking of ‘help’ in a scenario of their dying world – perhaps as a form of religious and spiritual expression. Alternatively, their own demise may be irreversible, and by transmitting their library of information, they at least preserve memory of their civilization for anyone that could pick up the signal, as a form of interstellar statue, or so as to pass on the knowledge of their civilization so that others may benefit. Although we cannot rule out such possibilities, they are very unlikely. This is because any civilization that has the capacity to beam radio signals or optical laser signals into deep space is likely technologically near to also being a space-based civilization (within decades or centuries). Given this, in the two ‘doomsday’ scenarios described above, they would have other options such as building starships or moving off-world. The success then of any observational surveys, in searching for long-distance transmissions from other civilizations, would appear to be low. However, the surveys are still of value, because they have the possibility of uncovering new astrophysical objects that the main stream astronomy community is not looking at. Alternatively, they may stumble upon a signal which is evidence of industrial technology, pointing the direction at least to the location of our brothers and sisters among the stars. One of the questions currently being debated in the field is whether we should be sending transmissions out into the universe ourselves. It is perceived that by broadcasting our position and existence, we are exposing ourselves to unknown threats from potential hostile species. For example, in a recent Forbes article Siegel [39] asks if humanity is about to accidentally declare an interstellar war on an alien civilization by sending out small Breakthrough Starshot probes? In a response Loeb [40] responds that the risk is small. It is worth considering this for a moment. It would seem to depend on the technological and sociological state of that alien race, compared to us. If Page 8 of 14 they are much less advanced than us then we likely do not need to worry. However, if they can detect the Starshot probes then this implies that their technology must be at a similar level to ours in order to understand what they are looking at. Yet, like us, they would not be able to do much about it due to the lack of technological maturity. In the event they are more advanced than us, they as well as detecting the probes they would be able to capture one and examine it. A close inspection would quickly demonstrate to them that we were not a threat, and these were in fact exploration probes. If they were a threat to us even before the arrival of these probes, they should already be aware of us due to the emission of our radio transmissions over the last near-century. 2.6 Single Event Detections The scientific method demands the principle of reproducibility. This is an experiment where a value is obtained and can be reproduced to a high degree of agreement between measurements or observations conducted. This is considered necessary in order to build a hypothesis and then a theory. However, the universe is a strange place. There is so much we do not understand, such as dark matter, dark energy, unification of quantum mechanics and general relativity, the nature of black hole singularities, whether the predictions of string theory and its extra spatial dimensions is plausible. There is an example of an experiment that we have so far only been able to observe the once, and that is the Big Bang – the creation of the Universe. We appear to accept this occurred, even though observations of another Big Bang are not currently reproducible. Yet, our acceptance of its existence, has led to a vast improvement in our understanding of the Cosmos. This has been achieved of course by studying the aftereffects of the Big Bang which are reproducible, such as the Cosmic Microwave Background Radiation as a proxy for the temperature of the Universe. What if we observe something in the universe such as a signal but only once? Do we dismiss it? Do we study it? If we cannot explain it using our conventional models of science should we consider the alternatives even if they are extreme? A good example is the famous ‘Wow!’ Signal detected by the Ohio State University Big Ear radio telescope in 1977 [41]. This was a 72 second pulse or intensity variation over time and was at a frequency of either 1420.36 MHz or 1420.46 MHz, which is very close to the value of 1420.41 MHz (21 cm wavelength) of the hydrogen line; also known as the ‘water hole’. This signal appears to be a flash of radio energy. Subsequent searches never detected the signal again from one of its two possible directions of origin. This does not mean it was not important. Another good example is a study by Harowitz and Sagan in 1993 [42] where they conducted a 5-year search of the northern sky for narrow-band radio signals near the 1420 MHz line of neutral hydrogen. They identified 37 candidate events of interests which were not again re-detected. Building up a collection of the signal intensity of such signals, may lead to a realization of a common pattern and the discovery of a new object, or even industrial signature. These are examples of what can be detected, but are not reproducible. Yet if we examine the general pattern of the emissions we may discover insights into their cause, using our known laws of physics. Alternatively, it could help us to understand the hypothesised new physics we are developing and point the way towards new discoveries, be it natural or artificial. 2.7 Astrophysical Nature of Signals The detection of signal emissions in the Universe has led to observations which span the entire electromagnetic spectrum. This includes optical astronomy, infrared astronomy, radio astronomy, x-ray astronomy, gamma-ray astronomy, ultra-violet astronomy. To gives some examples, from these studies we have been able to study many interesting and apparently exotic objects in the universe. This includes radio galaxies, quasars, pulsars, masers using radio astronomy. This includes compact stars, neutron stars, black holes using x-ray astronomy. This includes solar flares, supernovae, hypernovae, pulsars and blazars using gamma-ray astronomy. Yet there are still astrophysical sources for which we have little understanding. The measured light curves of gamma-ray bursts are highly complex and varied and no two light curves are alike. They can vary in intensity and also in pulse duration. It is believed that Long gamma-ray bursts, which make up ~70% of the observations, and have a duration longer than two seconds, are linked to rapid star formation within a galaxy and this includes the phenomenon of core collapse supernova. There are also Ultra-long gamma-ray bursts which can last more than 10,000 s, and it is believed that these are due to the collapse of a blue supergiant or a new magnetic neutron star which has a very powerful magnetic field. Approximately ~30% of the observed gamma-ray bursts are short gamma-ray emissions, and they have a pulse duration of two seconds or much less. Several have been detected but it has proved difficult to date to link these events with any star formation regions or supernovae or other objects. The initial theory to explain them is that they are the result of binary neutron star mergers or the collision with a neutron star and a black hole. They would produce so-called kilonovae, Page 9 of 14 which is a transient event and characterizes their peak brightness Astronomy and astrophysics is at the beginning of trying to understand these exotic objects. But who is to say that they are not evidence of ‘techno-signatures’ of some form. If we apply the so-called ‘Occam’s razor logic, where the simplest solution tends to be the right one, what answer do we arrive at? Is it that in a universe filled with stars, that it is some sort of stellar event? Or is it that in a universe which may be filled with intelligent life that it is some sort of technology emission. This could be a transient source in motion for example, such as would be given off by a propulsion engine [22, 43]. It is true we have observed many stars, and only one intelligent life-form, so our expectation may be towards the former conclusion of the logic, yet this is still based on a belief that the source of those emissions would come from that group of objects. 5. Discussion When approaching the problem of intelligent life in the universe, one of our first points of analysis is simply to ask if interstellar travel is even possible. This is because if it does not appear to be, then that would be the explanation for the Fermi problem. However, given that the 1970s Project Daedalus study conceived of a fairly credible machine, despite its flaws, it is not an unreasonable interpretation of this work that in the future (even if centuries or millennia) we can design a much improved machine which is far more credible, and therefore interstellar travel does appear to be feasible in theory, as a proof of existence problem. This conclusion is amplified even further by the fact that Daedalus was just a method via fusion, and since then we have conceived of dozens of other methods by which a machine could be propelled to the stars – which is a form of validation for the original Project Daedalus conclusions that interstellar travel was possible in theory. This is a conclusion one might choose to only apply to robotic vessels, but we have also conceived of various methods by which biological crews may be transported (e.g. seed ships) and so this conclusion would seem to be applicable to human missions too, at some point in the future. So given that interstellar travel appears to be feasible in theory, we must look for other solutions. We also live in an age where countless exoplanets are now being discovered around other worlds. But one fact that that does appear to have been discussed in the literature is that if an alien species never discovers a science that goes beyond simple molecular chemistry, and they live on a large mass planet (much larger than the Earth), then they will never be able to leave that planet due to the enormous escape velocity associated with the gravitational well. A galaxy dominated by large mass planets may lead to a quiet one. To assess this, one would need to know more about the mass function of Earth type planets and Jovian type planets that exist in the galaxy, in order to inform any statistical assessments. Certainly, our observational telescopes are improving our knowledge of the universe every day, and giving us insight to inform our ‘best guesses’ about what may be possible. But it is also clear that sending starships too far away destinations, as a form of in-situ reconnaissance, will add valuable to such an effort as a form of scientific enquiry. As mentioned earlier, we can look at the problem by examining two extremes, and then everything else in between. These two extremes are that we are the only intelligent life in the galaxy, or that we live in a crowded galaxy. Let us consider both of these extreme possibilities in turn, before we consider everything else in between. Hypothesis 1. We are the only intelligent life in the galaxy. This seems to be highly improbable, purely from a statistical point of view. That said, evolution by natural selection does allow for spontaneous mutations that have never been seen before. It could be that higher intelligence (perhaps defined by high cortical neuron density compaction) is a form of evolutionary mutation and we are merely the first to exhibit it. Then again, there are also examples in the animal kingdom of Earth where two species, having no connection to each other on the evolutionary chain, (different lineages) have a similar design element or analogous structures, because nature has found that solution twice for those two different species – this is known as convergent evolution – as opposed to homologous structures or traits which do have a common origin. An example of this would be vertebrate wings as forelimbs, such as used on bats and birds – they are analogous and resemble in each in the same way, and they fulfil similar functions, but their roles in flight have evolved separately. On this basis, looking for evidence of a separate biogenesis on Earth or outside of the Earths biosphere is entirely reasonable. In particular, since mutation by natural selection favours those mutations which are beneficial, and natural selections appears to guide the evolutionary processes to incorporate only the good mutations into the species and expunge any bad mutations. Given that intelligence appears to be an advantage to survival, it would be a surprise if nature has not allowed this mutation to occur in other species. In addition to this, biology tends to define an organism as any contiguous living system, and it is generally the consensus that all types of organisms are capable of some degree of response to stimuli, reproduction, growth and development and homeostasis – the so called properties of life. An organism may consider of one cell (unicellular) or more than one cell Page 10 of 14 (multicellular) and they are typically of microscopic size and hence termed microorganisms. There will also be an ecological connection between any organisms and their environment. Biological classification will also tend to cite the following organisational groups as a form of hierarchy: atoms, molecules, macro molecules, molecular assemblies, organelles, the cell, tissue, organs, organ systems, organisms, populations, species, community, biosphere. If we are to fully understand the apparent limitless pathways of evolutionary biology and the application of natural selection, it might be prudent to look for evidence of these organisational types operating in unexpected systems. This could be in apparent ecological systems or even astrophysical systems. Who is to say that the entire galaxy is not in some way operating, in analogy if not directly, as a giant organism? Overall, we need to establish a greater dialogue among the many disciplines of human thought to ask a broader question about what is life. Considering the question of biology in the Cosmos, it would appear to be a highly arrogant position, to assume that biology has only occurred on one world in a vast and expansive universe over its 13.8 billion years of history. This position would seem no different to the age old assertion that the Earth was the center of the Solar System and thereby the universe. The reason it takes so much longer to address the biological element to this apparent anthropocentric thinking, is that the distance between the planets and by implication the stars is so much further away, and it is only in fairly recent times that we have achieved the technological capability to begin to ask this question when we became a space fairing species. To be explicit in declaring opinions, this author’s view, based on statistical arguments alone, is that not only has intelligent life been to our Solar System in the past, but that it is likely here now in some form – but the nature by which they are here is nontrivial to unravel, given our biased thinking, preconceived notions, assumptions about them, lack of knowledge, and the poor manner by which we frame our questions such as the Fermi Paradox. Hypothesis 2. We live in a crowded galaxy. This has a much larger suite of options in terms of explanations, and it is mainly a problem for the disciplines of physics, astrophysics and moral philosophy. If we take as a priori assumption that we live in a crowded galaxy but are not observing or seeing any evidence of intelligent life, then we can examine the problem from three levels of investigation. The first is observations, the second is analysis and interpretations, and the third is moral philosophy as applied to extraterrestrial socio-cultural groups. When we say we are not ‘seeing’ evidence of intelligent life in the galaxy, we have to ask what is meant by ‘seeing’? Principally, our only mechanism for interacting with the Cosmos over large distance scales is via the observations of light, be it through radio waves, micro-waves, infra-red or optical. This means that we are interacting with the universe purely through the electromagnetic spectrum and then trying to use that information to interpolate about what is taking place to manifest that specific spectrum that is observed. So the first thing we could do is to expand our range of observations, to encompass the entire electromagnetic spectrum, but also to go outside of it to observe other phenomena. We could also examine the vast animal kingdom of the planet Earth for examples of species that have senses or interaction mechanisms that are not just through the electromagnetic spectrum, and then to hypothesise for alien biology’s where nature may have found a similar solution. Overall, we need to vastly expand our horizons for what we are trying to ‘see’ and in particular to avoid a human centric perspective. This also includes a re-examination for what we observe with light and whether our assumptions about homogeneity throughout the Cosmos are correct. This Copernicus principal has served us well in past centuries, and there are good reasons to think that the universe is homogenous and uniform on all scales, but it may not be in certain parts, and if that is the case, then our observations will simply be in error. As well as ‘seeing’ we can try to access other senses by which we might interrogate these distant worlds. Currently, the laws of physics appear to prohibit us from smelling, tasting or hearing them. But certainly we can touch them, if we have the commitment and vision to send out reconnaissance probes and land planetary landers onto the surface of any bodies in orbit around those distant stars. So let us say that we have then exhausted all options in terms of observations, presumably after a multi-decade program of work and we still conclude that we are not ‘seeing’ any evidence of intelligent life in the galaxy. The next stage is to question our methods of analysis and interpretations, of the data that we are observing. It is entirely possible that the evidence is staring us in the face, but we are ignoring it because it does not fit within our pre-conceived notions. This could be for our definitions of life or intelligent life for example, and living systems may be much more ubiquitous that is imagined within our limited definitions. We also need to examine our methods, such as the requirements of the scientific method for reproducibility and falsifiability. If an event cannot be observed again, it is immediately disregarded and thrown out. When in fact, this is inconsistent with the Page 11 of 14 large scale belief of human history – i.e. many claim there was one biogenesis event which gave rise to all living things. We also have a tendency to throw away so called outliers, because they do not fit the statistical trend of a data set. We should go out of our way to scrutinise those outliers and not be so keen to disregard them because they do not fit our preconceived notions of how things work. There is also a bias in science, such as a rush to conclude that an observation must be explainable by some astrophysical event. Although this is not an unreasonable position to take, alternatives should be considered, no matter how wild, and the door should never be closed on what possibilities there may be. After all, astrophysicists appear to be permitted to speculate on the exotic nature of stars (i.e. black holes, collapsars) which often take decades to be accepted by main stream science. So why shouldn’t we be permitted to speculate on the diverse possibilities for signal detections as having an artificial origin. So let us say we have now greatly expanded the scope of our interpretations and analysis, and even after this program of work we still conclude that we do not see evidence of intelligent life in the galaxy. On the priori assumption that intelligent life does exist, but we are not seeing it, this leaves several possibilities, most of which comes down to forms of moral philosophy, given the nature of the uncertainties involved in such futuristic scenario building. The first is that there is some agreed consensus not to interfere with our cultural development. Alternatively, there could be a genuine fear to interact with us, due to our immature nature, or the unwise manner by which we use our technologies. We might also not be seen as good custodians of our own planet, so what example are we setting for how we might conduct ourselves out there. We can take an analogy of a family living in a street, and there is another house in the street with a family of convicted felons, known liars, instigators of violence, overall bad company; from which we might choose to cross the road rather than interact with them. Another example could be there is a family which are perfectly fine in terms of obedience to law and order, but they are from a different culture to us and they have strange ways which are alien to us and we have a tendency to fear that which we do not know or understand. Intelligent life in the galaxy may choose to avoid us for any one of these reasons, which are all variations on the zoo hypothesis. Alternatively, it could be that we are simply not of interest to any advanced intelligent life form, the same way that we walking down the street would not be interested in an ant crossing the road. This would be the case if our cultural and/or technological development was so far apart, of order a million years or more. It could also be the fact that because of the huge gap in development, that they cannot see how to communicate with us, because we are simply too primitive. Another possibility related to this is the technological runaway effect, where some form of full blown transcendence or AI convergence has been achieved by those advanced alien societies, thus exacerbating the cultural and technological divergence between us. Such things are imagined in the concepts of von Neumann probes, self-replicating machines. However, it is worth noting that there is a fundamental flaw in the arguments of those that argue for the existence of a technological singularity. If machines ever get to a point where they can re-invent themselves and so that their decision making is equivalent to years thinking for us, this process would be exponential and the result of achieving a singularity level would mean that they would be so radically diverged from our perceptions of anything that we recognise, that from our perspective they would no longer exist. The act of attaining a singularity state is also the act of disappearance. Given this, this author does not think that a full technological singularity can be achieved, but instead a super-intelligence, which itself reaches some technological limit that is within our perceptions, set by the laws of physics. This is analogous to making a mathematical singularity disappear by the use of a co-ordinate transformation, which would represent the real laws of physics and not the results of our mathematical philosophy; which operates in the domain where our knowledge of physics is lacking. It is clear therefore that we need to question the scope of our observations as well as reassess our interpretations of the data we are measuring, if we hope to have any chance of detecting evidence of intelligent life in the galaxy. But ultimately, any life forms travelling across space will be using starships of a form. It is therefore highly prudent to widen our imaginations as to what form they may take, as well as what observable emissions they may make which we can detect – accepting that the known laws of physics will apply, or the unknown laws of physics will eventually be elucidated by such studies. The act of designing starships is also a self-fulfilling prophesy in that by imagining them we are inching forwards towards their fruition. We have explored the two extremes of a crowded galaxy and a galaxy with only one example of intelligent life – us. But there are obviously lots of other options in between these two extremes, such as there being two intelligent species in the galaxy, or dozens, which would not necessarily meet either of the definitions of the two extremes examined above. So it may be that the galaxy is populated by intelligent civilizations among its at least 100 billion Page 12 of 14 stars, but they are just not frequent enough to notice each other. This comes down to a question of distance and time. Given the galaxy is 100,000 light years across, and the average star distance is around 5 light years, this means that in any interstellar crossing a starship will encounter 100,000/5 = 20,000 stars on its line of sight path. Now it will obviously pass within a few light years of others on that journey, so let us be charitable and say it will come within observational distance of around 100,000 stars on one galactic crossing. That is still only 100,000 / 100 billion = 0.0001% of the entire stellar population. And if there are optimistically even as many as 100,000 intelligent civilizations in the galaxy distributed over the 100,000 LY diameter spiral, we are looking at a very low probability of interaction. The other issue is a temporal one. In that even with say 100,000 intelligent civilisations in the galaxy, with each stars separate evolution, planetary formation timescale, the rise of life, then emergence of intelligent life and eventually a space based culture, these events will not all happen in parallel. Some may be overlapping, but it is more likely that there will be limited windows upon which to discover other intelligent civilizations that have a similar level of technological development to us. By similar, I mean within one million years, because anything less or more than this has implications for interest and also whether it is possible to conduct meaningful communications between worlds. Overall this is a question of probability and population size which feeds into the likely hood of interaction. Another possibility is that we are once again anthropomorphising the problem, mapping human hopes and desires onto an extraterrestrial species. Our primary driver for exploration and discovery is curiosity and the growth of industry. But an intelligent extraterrestrial species may not have the same motivations of us. They may choose to cross the galaxy but for entirely different reasons, and on their journey not even be listening out for the presence of others. Survival is likely to be a primary driver for exploration, but we do not know this for sure. If we do live in a crowded galaxy, then any reasonable analysis of the number of stars, number of planets, the evidence for life formation on Earth, the age of civilisations, certainly makes it highly probable that they, meaning ET, are already here in some form, or are at least aware of us and perhaps observing from a distance. Certainly, if any life is found on the planets within our own Solar System (such as on Europa or Mars) as evidence of separate biogenesis, then the probability of life in the galaxy will increase too – and we must conclude that not only have they been here but are here now in some manner. This is not to support the vast claims of Unidentified Flying Objects (UFOs) and alien abductions, many of which can be examined by any reasonably thinking person and dismissed as mistakes, misinterpretations, fantasies or fabrications or psychological phenomenon. That said; there is a small quantity of those observations, perhaps less than 0.1% which is of interest and could be examined further. But those incidences are lost in the noise of the fantastic claims, and also in the difficulties of distinguishing from genuine sightings and government black programs which are by their nature secretive and explicitly clandestine – and sometimes to the extent that government programs have been used as cover stories for reported sightings therefore making proper objective analysis difficult. We may have seen ET already, but we didn’t believe it. What we might consider however, is that if we presume an intelligent species is observing us from a distance, the same way that we observe the animal kingdom from a distance, or the same way that our telescopes are now looking for evidence of habitable planets around other stars. It is entirely likely, given the advanced state of their technology, that they can observe and therefore learn a lot about us, including from emission signatures to indicate evidence of wide scale industrialisations, or the development of nuclear based technology. When the world’s highest atomic explosion was detonated by the Russians, it achieved a yield approaching ~60 Mtons, and it was so energetic that it created two new elements, later named Einsteinium and Fermium. It is these sorts of signatures that would be of interest to any observing civilisation, as evidence that we are maturing technologically. In particular since nuclear technologies have myriad applications to starship power and propulsion systems. It is possible, that they would place ‘sentinel’ type probes in the outer limits of our Solar System as a form of warning beacon. The idea of searching for extraterrestrial artefacts which might have this function has been suggested previously by Freitas [44]. Once we have attained technological prowess, they would then be interested in what direction we were going to go, towards technological annihilation and/or stagnation or technological maturity. If it appeared that we were in fact heading towards technological maturity, then the next question they might ask is when will we achieve space capability, in terms of sending missions to the outer edges of our Solar Systems and eventually to the stars – in effect when are we coming? Initiatives like the Breakthrough Starshot [13] might imply we are coming soon, and so we might expect that long-distance observations of us to be increased as we attempt to become free from the cradle of mother Earth. We have in fact made this question easy for any advanced monitoring ET to assess, due to the invention of the World Wide Web, itself perhaps a Page 13 of 14 precursor to a form of large scale artificial intelligence not unlike a Matrioska brain concept [45]. Given that the information from the web is beamed via space satellites, accessing that information may present an easy way to retrieve data about our civilisation – and by the way, this is another area we could examine for evidence of ‘interstellar hacking’. Areas they would be particularly interested in might be at what point we start to express interstellar ambitions, towards the stars. They would be interested in our designs, our concepts, or our philosophical and moral perspectives, and even our analysis of their existence, The quest to identify other locations for the origin of life and the rise of intelligence in the universe is a noble one that stands at the forefront of our greatest intellectual considerations. Over the last century much literature has been written on this subject, including in science fiction, enabling us to gain some philosophical grasp of the problem at least. There are numerous fields relevant to the problem of SETI. These are known as the astronomical community, which largely deals with the potential mission targets. Then there is the interstellar community which largely deals with the technology to get there. Then there is the SETI community which largely deals with the type of life and intelligence that may exist and how communications can occur. Finally, there is the field of science fiction literature, which builds all of the above into played out scenarios, to imagine our best hopes and our worst fears. There are other fields which are relevant although not so obviously involved as a community. This includes the biology and anthropology community for example. It is essential that to make substantial progress in the search for intelligent life outside of Earth, that these communities collaborate and co-operate together in an inter-disciplinary way. This author’s experience has been in the interstellar community for the last decade or so, and the experience has seen little interaction with SETI. The reason this is necessary, is so as to educate each other on what work is taking place, and also help to filter each other’s assumptions – a necessary requirement for any scientific endeavour. 6. Conclusions In this paper we have discussed the assumption of the Search for Extra-terrestrial Intelligence (SETI) program. It is concluded that greater efforts could be made to understand alternative definitions of ‘life’ and ‘intelligence’ in the Universe and then to extend that thinking into broader search strategies. It is also concluded that sending reconnaissance probes to other stars, would greatly compliment the current long-distance observing programs being conducted by the world’s telescopes. If the various disciplines of intellectual thought collaborate together more fully, it is likely that our philosophical and scientific statements are more likely to approach some approximation of the truth of reality and whether we are alone or not. Finally, the author would like to acknowledge the good efforts of the SETI community over past decades in trying to answer these difficult but profoundly important questions. Acknowledgements The author would like to thank Adrian Mann and Michel Lamontagne for use of their artistic graphics. References [1] L. R. Shepherd, Interstellar Flight, Space Chronicles, JBIS, 56, Suppl.2, pp.80-91, 2003. Republication of a 1952 paper. [2] A Bond, A. Martin, Project Daedalus: The Mission Profile, Final Study Report, JBIS, Special Supplement, pp.S37-S42, 1978. [3] A. Bond and A. R. Martin, Project Daedalus – Final Report, JBIS, Special Supplement, pp.S5-S7, 1978. [4] A. Bond and A. R. Martin, Project Daedalus Reviewed, JBIS, 39, pp.385-390, 1986. [5] K. F. Long, Project Icarus: Nuclear Fusion Space Propulsion & the Icarus Leviathan Concept, Space Chronicles, JBIS, 65, Suppl.1, 2012. [6] K. F. Long, R. Osborne, P. Galea, Project Icarus, Starship Resolution Concept Design Report, Internal Study Report Icarus Interstellar, July 2013. [7] K. F. Long, A. Crowl, A. Tziolas, R. Freeland, Project Icarus: Nuclear Fusion Space Propulsion & The Icarus Leviathan Concept, Space Chronicles, 65, Supplement 1, 2012. [8] R. Freeland II and M. Lamontagne, Firefly Icarus: An Unmanned Interstellar Probe Using Z-Pinch Fusion Propulsion, JBIS, 68, 3/4, pp.68-80, March/April 2015. [9] R. L. Forward, Roundtrip Interstellar Travel Using Laser-Pushed Lightsails, J.Spacecraft and Rockets, 21, 2, pp.187-195, March-April 1984. [10] R. L. Forward, Starwisp: An Ultra-Light Interstellar Probe, 22, 3, pp.345-350, May/June 1985. [11] K. F. Long, A. Hein et al., Initial Considerations for the Interstellar (Andromeda) Probe: A Three Day Study, Internal Study Report Initiate for Interstellar Studies, 8th March 2016. [12] G. A. Landis, Optics and Materials Considerations for a Laser-Propelled Lightsail, Presented as paper IAA-89-664 at the 40th International Astronautical Federation Congress, Málaga, Spain, 7-12 October 1989, Revised December 1989. [13] P. Lubin, A Roadmap to Interstellar Flight, JBIS, 69, 02-03, pp.40-72, February-March 2016. Page 14 of 14 [14] R. W. Bussard, Galactic Matter and Interstellar Flight, Astronautica, 6, FAsc.4, 1960. [15] C. Sagan, Direct Contact Among Galactic Civilizations by Relativistic Interstellar Spaceflight, Planet. Space Sci, 11, pp.485-498, 1963. [16] A. R. Martin, World Ships – Concept, Cause, Cost, Construction and Colonisation, JBIS, 37, pp.243- 253, June 1984. [17] A. Bond and A. R. Martin, World Ships – An Assessment of the Engineering Feasibility, JBIS, 37, pp.254-266, June 1984. [18] A. C. Clarke, 2001: A Space Odyssey, Hutchinson, 1968. [19] K. F. Long, Deep Space Propulsion, A Roadmap to Interstellar Flight, Springer, 2011. [20] B. M. Oliver, J. Billingham et al., Project Cyclops, A Design Study of a System for Detecting Extraterrestrial Intelligent Life, NASA-CR-114445, Stanford University, N73-18822, Summer Faculty Fellowship Program in Engineering Systems Design, 1971. [21] K. F. Long, Unstable Equilibrium Hypothesis: A Consideration of Ultra-Relativistic and Faster Than Light Interstellar Spaceflight, JBIS, 69, 2016. [22] R. Zubrin, Detection of Extraterrestrial Civilizations via the Spectral Signature of Advanced Interstellar Spacecraft, Progress in the Search for Extraterrestrial Life, ASP Conference Series, 74, 1995. [23] B. Miller, The Aliens are Coming, The Extraordinary Science Behind Our Search for Life in the Universe, Sphere, 2016. [24] S. Webb, If the Universe is Teeming with Aliens – Where is Everybody? Fifty Solutions to Fermi’s Paradox and the Problem of Extra-terrestrial Life, Copernicus, 2002. [25] A. R. Martin & A. Bond, “Is Mankind Unique? – The Lack of Evidence For Extraterrestrial Intelligence”, JBIS, 36, pp.223-225, 1983. [26] I. S. Shklovskii & C.Sagan, “Intelligent Life in the Universe”, Holden Day, 1966. [27] C. Sagan & F. Drake, “The Search for Extraterrestrial Intelligence”, Sci.Am., 232, 80, May 1975. [28] D. Viewing, “Directly Interacting Extraterrestrial Technological Communities”, JBIS, 28, 735, 1975. [29] M. Hart “An Explanation for the Absence of Extraterrestrials on Earth”, QJRAS, 16, 128, 1975. [30] F. J. Tipler, “Extraterrestrial Intelligent Beings Do Not Exist”, QJRAS, 21, 267, 1980. [31] G. Genta, Lonely Minds in the Universe, The Search for Extraterrestrial Intelligence, Copernicus Books, 2010. [32] R. Armstrong, Star Ark, A Living, Self-Sustaining Spaceship, Springer, 2017. [33] E. Schrödinger, What is Life? The Physical Aspect of the Living Cell, Cambridge University Press, 1944. [34] F. Hoyle, The Black Cloud, William Heinemann Ltd, 1957. [35] P. Stamets, Mycelium Running: How Mushrooms Can Help Save the World, Ten Speed Press, 2005. [36] G. L. Matloff, Stellar Consciousness: Can Panpsychism Emerge as an Observational Science?, Edgescience, 29, pp.9-14, March 017. [37] P. Wohlleben, The Hidden Life of Trees, What They Feel, How they Communicate, Discoveries from a Secret World, Greystone Books, 2015. [38] P. Godfrey-Smith, Other Minds, The Octopus and the Evolution of Intelligent Life, William Collins, 2017. [39] E. Siegel, Is Humanity About to Accidentally Declare Interstellar War on Alien Civilizations?, Forbes, 07, August 2018 https://www.forbes.com/sites/startswithabang/2018/ 08/07/is-humanity-about-to-accidentally-declareinterstellar-war-on-aliencivilizations/#e5f062226a90 (last accessed 16.09.18) [40] A. Loeb, Why Humanity Probably Won’t Accidentally Start an Interstellar War with an Alien Civilization, Forbes, 16 August 2018 https://www.forbes.com/sites/thelabbench/2018/08/1 6/why-humanity-probably-wont-accidentally-startan-interstellar-war-with-an-aliencivilization/#165edd2d3dfa (last accessed 16.09.18) [41] J. R. Ehman, The Big Ear Wow! Signal, 30th Anniversary Report, North American Astrophysical Observatory, 28 May 2010. [42] P. Horowitz and C. Sagan, Five Years of Project META: An All-Sky Narrow-Band Radio Search for Extraterrestrial Signals, The Astrophysical Journal, 415, pp.218-235, 20 September 1993. [43] D. R. J. Viewing, C. Horswell, E. W. Palmer, Detection of Starships, JBIS, 30, PP.99-104, 1977. [44] R. A. Freitas Jr, F. Valdes, The Search for Extraterrestrial Artifacts (SET), Acta Astronautica, 12, 12, pp.1027-1034, December 1985. [45] R. Osborne, Dyson Spheres and Other Astroengineering Megastructures, Presentation at British Interplanetary Society Olaf Stapledon Symposium, 23 November 2011.


Hexbyte – Glen Cove – News Patience pays off: five reasons why being patient makes you a better photographer -Hexbyte Glen Cove News

Hexbyte – Glen Cove – News Patience pays off: five reasons why being patient makes you a better photographer -Hexbyte Glen Cove News

Hexbyte – Glen Cove – News

Hexbyte - Glen Cove - News

There are plenty of ways you can improve your photography. You should get inspired, learn new stuff, go out and shoot, make mistakes and learn to correct them… But you know what else you need to have if you want to become a better photographer? “Patience you must have, my young Padawan,” as Yoda would say. In this video, Pierre T. Lambert gives you five ways patience will help you to raise your photography to a higher level.

Hexbyte – Glen Cove – News 1. Patience to wait for the right light

Sometimes, all you need is to wait extra few minutes to get just the right light and make your photos stunning. This is especially true around sunrise and sunset when the light and colors change minute after minute. So, don’t rush in. Don’t just snap a few photos and leave. Spend some time at the location, shoot at different times and make the best of the light you get. I believe that landscape photographers will find this scenario very familiar.

Hexbyte – Glen Cove – News 2. Patience to wait for the right subject

Patience can be crucial for a good street photo. Sometimes, you spot the scene and the person you want to capture, but your subject simply isn’t positioned well. Other times, you imagine the shot you want to take, but you need to wait for someone to walk into your frame exactly where you want them. In both scenarios, you’ll have to wait. Don’t just snap random shots. Instead be patient, wait for the right moment, and then press the shutter.

Hexbyte – Glen Cove – News 3. Patience to wait for the right weather

Just like #1, this one can also be very familiar to landscape photographers. Sometimes you’ll arrive at the location just to see that the weather isn’t what you need for the best shot. You may need to wait a few hours, maybe all day. But the key is to be patient. In most cases, it pays off.

Hexbyte – Glen Cove – News 4. Patience to polish different skills

There will be times when you won’t be able to shoot what you usually shoot. For example, if you’re a travel photographer, there will be times when you’ll stay in your hometown. If you shoot landscapes, there will be times when you’ll be stuck in the city. You get the gist.

In these situations, Pierre advises you to take advantage of the situation to polish your other skills. Make the best out of the current situation, and use what you learn the next time you shoot what you normally do.

Hexbyte – Glen Cove – News 5. Patience to improve and succeed

Finally, patience is the key to learning any new skill. Therefore, you should have patience when learning anything about photography. If you’re a newbie, especially if you’re anything like me and you’re really impatient – it may all seem overwhelming and you may want to give it all up. Don’t! Be patient and go step by step. Photography is a huge field and there’s always something to learn, no matter how skillful you are. So, take your time to learn and be patient. Learning is a beautiful and a life-long journey, do your best to enjoy it!

[Become a BETTER Photographer using PATIENCE! | Pierre T. Lambert]

Read More

Hexbyte Tech News Wired SpaceX’s Starship, Meant for Mars, Prepares for a First Hop

Hexbyte Tech News Wired SpaceX’s Starship, Meant for Mars, Prepares for a First Hop

Hexbyte Tech News Wired

Last Sunday, as much of the country tuned into the Super Bowl, SpaceX CEO Elon Musk and a crew of engineers were gathered in McGregor, Texas, the small city where the company maintains a rocket test site. For a few seconds in the early evening, the sound of a new engine roared across the flatlands. “First firing of Starship Raptor flight engine!” Musk tweeted along with video footage of the test fire.

The engine will power SpaceX’s upcoming heavy-lift launch system, consisting of two components: a large rocket dubbed the Super Heavy and a crew transporter called Starship. First introduced by Musk in 2016 at a meeting of the International Astronautical Congress in Guadalajara, Mexico, the Starship transporter is designed to carry as many as 100 people to the moon and Mars. In true SpaceX fashion, both the rocket and the transporter will be reusable: able to launch, land, and repeat many times over.

SpaceX tends to be private about its affairs, but not much gets past the company’s biggest enthusiasts. In January, eagle-eyed observers near the company’s Texas facilities spotted the appearance of a silver spaceship on the otherwise flat landscape, which Elon Musk confirmed to be SpaceX’s Starship. Unlike the iconic black-and-white paint scheme of the Falcon series of rockets, the Starship transporter sports a shiny, stainless steel skin that evokes a vintage sci-fi vibe. Musk says the vehicle is a prototype version of the craft that will one day ferry humans.

This prototype is now preparing to take part in a series of short flights called “hop” tests. According to FCC filings, it will conduct both low- and high-altitude flights that could climb as high as 16,400 feet. The transporter that will conduct those flights will be powered by three engines identical to the one test-fired on Sunday. In December, Musk hinted that hop tests would begin in early spring. But in January, gusts of up to 50 miles per hour knocked over the prototype, breaking the mooring blocks that secure the Starship to the ground, Musk reported on Twitter. The needed repairs might push out the timing of the tests.

The Starship system is the latest in SpaceX’s parade of increasingly large rockets. A year ago, SpaceX launched and landed its Falcon Heavy rocket for the first time, generating 5 million pounds of thrust from the rocket’s 27 engines. Tens of thousands of spectators watched as two of its three boosters landed in perfect unison on their designated landing zone. (The rocket’s center core failed to land on one of the company’s two drone ships.)

That was the only flight of the Falcon Heavy so far, though SpaceX says the next launch is estimated to take off no earlier than March. As the most powerful launch vehicle on the market today, Falcon Heavy can deliver to low Earth orbit more than twice the payload capacity of its counterpart, the Falcon 9. But even it can’t help Musk ferry people to the moon or Mars, an ambition that he has echoed repeatedly since SpaceX’s inception. For that, Musk needs the Starship.

Sunday’s test was not the first time a Raptor fired up, but it does represent the first test of a “flight-ready” engine. Afterwards, SpaceX posted on Instagram that the engine had reached about 60 percent of its power—a milestone for the Starship program. Unlike the engines currently powering SpaceX’s Falcon 9 and Falcon Heavy, which use a mixture of kerosene and liquid oxygen, the Raptor is fueled by methane. (SpaceX’s competitor, Blue Origin, is also developing a methane-fueled engine called the BE-4.) Mars has a generous supply of methane, which could make refueling any rockets that land there relatively straightforward.

After its hop tests, Musk has said he will divulge more of the vehicle’s design details. Some of its specifications have changed from what he’d previously released. When the concept of an interplanetary transport system was first revealed, for example, he had said that the giant rocket would be constructed out of carbon-fiber composites. The debut of a metallic prototype shows that SpaceX pursued a different tack. Musk says that the stainless-steel alloy that makes up the Starship can withstand the searing temperatures experienced during the different phases of spaceflight. Resembling the Atlas rockets of the early space program, the Starship’s metallic skin won’t need as much thermal shielding as other materials. And areas that take the brunt of the heat during atmospheric entry will be actively cooled with residual liquid methane. The vehicle will also feature landing legs and windows so that passengers onboard can see out during flight.

Musk and SpaceX have a lot riding on this engine, as it will power both the Super Heavy rocket during launch and the Starship spacecraft in space. Last September, SpaceX announced that it had signed its first passenger to fly on the Starship transporter. Yusaku Maezawa and a gaggle of artists will embark on a weeklong journey to the moon. The mission is planned for 2023, but developing rockets costs money, and the feasibility of SpaceX’s Starship has been in question since its inception. So far, Maezawa’s trip is the only mission booked for this vessel, but as SpaceX moves through the design process and Musk reveals the rocket’s capabilities, more missions could come.

Even Musk knows that the notion of Starship is outlandish, referring to its development as “absolutely insane.” According to the CEO, the work on this project and the company’s space-based internet endeavor, dubbed Starlink, are what recently prompted SpaceX to restructure its workforce, laying off 10 percent of its staff. In explaining the SpaceX layoffs during last month’s Tesla earnings call (where Musk is also CEO), he described it as a preemptive measure, since such massive projects have bankrupted other organizations.

To keep the project from spiraling out of hand, Musk says that SpaceX plans to build its Starship as quickly as possible. But first, SpaceX has to prove it can safely transport people—starting with a different, existing rocket, and an upcoming trip to the International Space Station.

More Great WIRED Stories

Read More

Hexbyte Tech News Wired What Robert Mueller Knows—and Isn’t Telling Us

Hexbyte Tech News Wired What Robert Mueller Knows—and Isn’t Telling Us

Hexbyte Tech News Wired

It’s only Wednesday, but the increasingly sprawling investigations surrounding President Donald Trump this week have already sprawled even further. News came Monday that federal prosecutors in the Southern District of New York served a wide-ranging subpoena digging into the finances of the Trump inaugural committee. Then, Wednesday morning, the House Intelligence Committee—in its first meeting of the new congress—voted to hand over witness transcripts from its own Russia investigation to special counsel Robert Mueller, a move widely understood to be motivated by the belief of Democratic members that various witnesses, including perhaps Donald Trump Jr., have lied to them.

Meanwhile, Roger Stone—himself indicted, in part, because of his alleged lies to Congress and witness tampering that encouraged his associates “to do a ‘Frank Pentangeli,’” a reference to a Godfather Part II character who lied to Congress—continues his bizarre post-indictment media road show.

A close reading of the Stone indictment shows the odd hole at the center of the Mueller investigation so far. It followed a now familiar pattern: Mueller’s court filing included voluminous detail, including insight into the internal decisionmaking process of Donald Trump’s presidential campaign—and yet the indictment stopped short of alleging that Stone was part of a larger conspiracy.

Given how much Trump says, in all settings, all the time, his silences are just as conspicuous as Mueller’s.

All told, according to a recent tally by The New York Times, “more than 100 in-person meetings, phone calls, text messages, emails and private messages on Twitter” took place between Trump associates and Russians during the campaign and transition. But while we’ve seen a lot of channels, we’ve thus far from Mueller’s court filings seen near silence about what was said during those contacts—and why. In court filings that are remarkable for their level of detail and knowledge, Mueller’s conspicuous silence about those conversations stands out.

Of course, one possible explanation is that the content of the conversations was completely innocent—totally normal directions and innocent chitchat about “adoptions,” sanctions, potential business deals, and geopolitical diplomacy. That could explain why Mueller thus far has only charged individuals, including Michael Flynn, Michael Cohen, and Roger Stone, with lying about those contacts, not the underlying behavior.

Yet the evidence against such innocence seems clear too, in the form of consistent lies, omissions, and obfuscations about the numerous meetings, conversations, and contacts with Russians throughout the Trump campaign, transition, and presidency.

To take just two examples: Donald Trump lied extensively, for more than two years, about his dealings with Russia concerning the Trump Tower Moscow project, which suggests that he knew something about it was shady. If he’d really believed the project was on the up-and-up, it’s easy to imagine Trump as a candidate making a public to-do about the deal—arguing that he felt America’s relationship with Russia was off-track, and that as the world’s smartest businessman, he alone could set it right. Trump could have made the case on the campaign trail that he alone could make deals with Putin because he alone was making deals with Putin. Yet he didn’t make that argument, and remained entirely silent about the deal for years, even lying about his interest in Russia. Given how much Trump says, in all settings, all the time, his silences are just as conspicuous as Mueller’s.

And then there’s the continued controversy over Trump’s private conversations with Vladimir Putin at geopolitical gatherings, from Hamburg to Helsinki to Buenos Aires. Under normal circumstances and operations, US leaders meet with Russian leaders to advance geopolitical conversations, and then they “read out” those meetings to staff in order to execute the work and vision hashed out one-on-one. The entire point of those head-of-state conversations is to generate follow-up work for staff later—to come to agreements, to advance national interests, and to find common ground for action on areas of shared concern. And yet in city after city, President Trump has had suspicious conversations with Putin, where he goes out of his way to ensure that no American knows what to follow up on. In Hamburg he confiscated his translators’ notes. In Buenos Aires, he cut out American translators entirely.

If he’s truly advocating for the United States in these meetings, there’s no sign those conversations have translated into any action by White House or administration staff afterwards. Instead, quite the opposite. Trump has emerged from those conversations to spout Kremlin talking points, even, apparently, calling The New York Times from Air Force One on the way back from Hamburg to argue Putin’s point that he didn’t interfere with the 2016 election.

Mueller presumably has far more knowledge about the “why” and the “what” of the interactions between Trump’s orbit and Russia than he’s shared so far. The Stone indictment is the latest court filing to show two-way conversation, flowing from Trump to WikiLeaks or Trump to Moscow and back again, without ever making clear what, precisely, was flowing back or forth.

In fact, the one thing that remains clear is just how much Mueller knows: He’s uncovered “track changes” in individual Microsoft Word documents, he’s referenced what specific words Russian military intelligence officers Googled three years ago, and even what the hired trolls inside the Internet Research Agency wrote to family members. Long before the House Intelligence Committee today kicked over a few dozen transcripts, Mueller amassed some 290,000 documents from Michael Cohen, tons more from the Trump transition team, and what the White House says is 1.4 million documents it turned over voluntarily, among countless other files, documents, reports, and classified raw intelligence.

Given that foundation of knowledge, it’s worth examining some of the “known unknowns,” places where Mueller has been silent but where he presumably knows far more than he’s chosen to say. To single out just five examples:

Who directed the campaign’s contact with Roger Stone—and what flowed back and forth?

Much has been made in the days since the Stone indictment about paragraph 12 of the court filing, which says “a senior Trump Campaign official was directed to contact Stone about any additional releases and what other damaging information [Wikileaks] had regarding the Clinton Campaign.” That simple “was directed” appears to indicate Mueller knows about the internal decisionmaking of the Trump campaign—and that he knows who directed the campaign’s contact to Stone, a pool of officials that has to be quite small. Mueller could have easily written the sentence in a thousand less indicative ways, saying simply that Stone was contacted by a senior Trump campaign official or that someone “suggested” or “told” that official to contact Stone. Instead, by saying “was directed,” Mueller implies a level of authority and even hints at a possible internal conspiracy to make contact with Stone, if it was for nefarious purposes—but Mueller stops short of saying who or why.

What more is there in the Flynn case that’s worth knowing?

Similarly, Mueller stops short of confirming whether Stone and his associates, Jerome Corsi or Randy Credico, actually ever did have contact with WikiLeaks or Julian Assange, a hole in the indictment so gaping that its absence is inexplicable unless it’s being saved for some future court filing. Similarly, Mueller only outlines Stone’s requests for stolen emails, not whether anything flowed back to Stone from WikiLeaks. Again, we’re left with the puzzle: Why would Roger Stone have allegedly continued to lie so long about being in contact with WikiLeaks if either he (a) never was or (b) the contacts were entirely routine and aboveboard? Mueller, though, says Stone “falsely denied possessing records that contained evidence of these interactions,” a phrase that seems to indicate much more.

How did Donald Trump and the Trump Organization react to the progress of the Trump Tower Moscow project?

Michael Cohen’s plea agreement only lays out that the president’s former lawyer and fixer repeatedly briefed Trump and members of the Trump Organization’s leadership on his progress on the Trump Tower Moscow project. But he stops short of saying anything about how the Trump team reacted—or what instructions, if any, they gave Cohen. Mueller also points out in Cohen’s plea that Cohen appears to have scuttled a trip to Russia to work on the deal on the very day that the DNC announced it had been hacked, odd timing at least.

Who directed Michael Flynn’s conversations with Sergey Kislyak?

There remains much to understand about former national security advisor Michael Flynn’s plea agreement, which states that he lied to FBI agents about conversations with Russian ambassador Sergey Kislyak during the transition. Two things, in particular, stand out in the facts of the case: First, that his contacts with Kislyak were directed by a “very senior member” of the Trump transition, an official identified in media reports as Jared Kushner, and second, if Flynn truly believed that he’d been properly directed by the president-elect or his designee to have the communications with Kislyak, why would he lie about them? Mueller has provided no answers yet here, either. But it’s worth noting, again, the oddity of Flynn’s aborted sentencing at the end of last year—where the judge, privy to more information than the public has, exploded at Flynn and finally prompted him to postpone the sentencing and continue cooperating. What more is there in the Flynn case that’s worth knowing?

Why did Manafort turn over polling data to Konstantin Kilimink? And what are Konstantin Kilimnik’s ties to Russian intelligence?

Mueller’s court filings have laid out that the special counsel believes that Kilimnik, Paul Manafort’s business partner and codefendant, had ties to Russian intelligence in 2016. Yet we haven’t seen evidence of why Mueller believes that—and, more important, what relevance that has to the Trump campaign. And we have only learned about the polling data from Manafort’s ongoing tech foibles, so why hasn’t Mueller brought that charge into the open yet?

Why the “first time”?

In last summer’s GRU indictment, Mueller seemed to say more than he needed to—just like he did with “was directed” in the Stone indictment—in pointing out that “on or about July 27, 2016, the Conspirators attempted after hours to spearphish for the first time email accounts at a domain hosted by a third-party provider and used by Clinton’s personal office.” Mueller doesn’t note in the document that this was the same day Trump invited Russia to hack Clinton’s email, but in writing about the day Mueller adds two seemingly unnecessary details: First, that the GRU did it “after hours,” which, accounting for the time difference, would mean after Trump’s campaign trail comments. And second, that the attack on Clinton’s email directly was “for the first time,” a fact that Mueller would have to prove in a trial, meaning he has evidence that makes him confident the action was new in Russia’s strategy. Mueller is only making his own potential case and evidentiary burden higher by singling out “after hours” and “for the first time,” so that obviously must mean something to his prosecuting team.

Mueller is clearly picking and choosing his charges carefully, so far. But there’s a lot more he’s not telling us, and if you add up all those missing puzzle pieces, it certainly seems possible—perhaps even probable—that Mueller is building towards a conspiracy indictment that he’s already told us about, one that brings together many of these open threads and players into one coherent narrative.

In thinking through what that might look like, it’s worth remembering the second paragraph of his indictment last July, the case that targeted the GRU officials, which lays out three distinct stages of alleged conspiracy: hacking the Democratic computers, stealing documents, and then “stag[ing] releases” to “interfere” with the election. The latter could easily encompass some of the actions already described in the Stone indictment.

The “who” and “why” of that broader conspiracy remain open questions, but it’s notable the extent to which so many threads of the Russia story increasingly appear to overlap. For instance, Russian lawyer Natalia V. Veselnitskaya, a key player in the June 2016 meeting at Trump Tower, was charged earlier this year with obstruction relating to a separate, older money laundering case relating to her role in helping Prevezon Holdings, an entity owned by Russian oligarch Denis Katsyv. Buzzfeed reported this week that one of the other attendees at that Trump Tower meeting, a former Russian soldier and current lobbyist named Rinat Akhmetshin, “received a large payment that bank investigators deemed suspicious from Denis Katsyv.” So here we have Veselnitskaya, the lawyer from Prevezon Holdings, helping to organize a meeting at Trump Tower, while one of the other attendees received money contemporaneously from the same entity.

Each revelation from Mueller and the other investigations around Trump appears actually to point in a consistent direction: a relatively small and regularly overlapping circle of people, both American and Russian, constantly lying and covering up their contacts together. Now, we’re just waiting for Mueller to tell us precisely why—and who.

More Great WIRED Stories

Garrett M. Graff (@vermontgmg) is a contributing editor for WIRED and coauthor of Dawn of the Code War: America’s Battle Against Russia, China, and the Rising Global Cyber Threat. He can be reached at garrett.graff@gmail.com.

Read More

Hexbyte Tech News Wired New ‘Game of Thrones’ Images Show … Umm, the Furs Are Great

Hexbyte Tech News Wired New ‘Game of Thrones’ Images Show … Umm, the Furs Are Great

Hexbyte Tech News Wired

The eighth and final season of Game of Thrones will be bigger, badder, and hairier than ever. No, we’re not talking about the saga—we’re talking about the furs! Because that’s literally all HBO sees fit (ha!) to show us. Earlier today, the studio released a collection of brooding character stills, notable mainly for the fabulous fashions. (Maybe that’s where they’re concealing all the plot twists—in the majestic folds of Brienne of Tarth’s capacious overcoat.) It’s been an incremental PR rollout, like water dribbling off an icicle, but at least we now know what our incestuous heroes and pretenders to the throne are hiding in their Westerosi winter wardrobes. Let’s unpack.

Angela Watercutter, Senior Editor: Whoohoo! New Game of Thrones images! Today is a blessed day. Much like Winterfell itself, it’s cold and grey here in New York and if there’s one thing that will warm my cold, dead heart, it’s some new images of the surviving members of the GoT cast—and boy, HBO really delivered on that. I mean, lookit! There’s Sansa Stark (Sophie Turner) looking stoic AF. Oh, and Arya Stark (Maisie Williams) looking all kinds of confident. Daenerys Targaryen (Emilia Clarke) also appears as though she’s ready to pummel some lands—and also maybe constipated? Everyone else is in some sort of furrowed-brow state (except Sam Tarly/John Bradley, who, I think we can all agree now, is probably going to be the only one to survive this mess). So, I guess the theme of the final season of Game of Thrones is “Be Worried”?

Whatever, these are character shots, and as such they reveal next to nothing about what to expect in Season 8 of Game of Thrones, except for maybe some inkling of who is still living when it starts. But let’s get past that bit of disappointment and get to what really matters. Friends, can we talk about these outfits? What are they wearing?

Emily Dreyfuss, Senior Writer: Having read all the books and watched every episode of this show, I have to admit that I still can’t remember what’s happening at this point of HBO’s Game of Thrones. [Eds. Note: Same.] Things are off the rails, yes? But the fashion gives me hope. I’m particularly excited about Arya’s modestly fur-lined wool-woven half cape.

Arya is my favorite blood-thirsty tween, but what I adore about this outfit is how little fur she’s sporting in comparison to her garish relatives and enemies. Arya wants to murder humans, not innocent animals—though, of course, if she has to kill what appears to be a squirrel to line her cape for warmth, she’ll do it. There’s just the slightest hint of femininity in the diamond stitching of that cape—which she has sewn on with leather straps. Plus, she’s obviously wrapped head-to-toe in leather—a dead animal product styled to keep her warm, protect her from stab wounds, and send the message that she’s a gender-role-nonconforming warrior at the same time. Arya’s practical in every way.

Arya’s outfit contrasts with her mortal enemy Cersei, whose decked out to look the part of the warrior, with her ornate epaulettes and perfectly placed lapel chains. Her outfit tells you that she’s very willing to orchestrate mass murder, but wouldn’t want to partake in anything as close-up as one-on-one combat. It might tousle her crown.

She also seems to have the sliiiiightest of grins on her face. Or am I imagining that? Is it a grimace?

Watercutter: Emily, you’re not dreaming. Jason, what’s your take here?

Jason Kehe, Senior Associate Editor: Poor Samwell—that looks like recycled polyester. Maybe he’s joined a high school biker gang? I think we’re supposed to believe he’s cool now.

Dreyfuss: LOL, Jason! No, he’s not cool, he’s enlightened! He’s done all the learning he could do at the citadel and now he doesn’t care about anything as silly as fashion or coolness.

Kehe: Generous of you, Emily. Also, I can’t stop staring at Daenerys’ ice-queen-pop-idol coat. Very Frozen. Is that polar bear? White fox? Ermine?! Perfectly fitted, with those flare-out sleeves. (I don’t know the official terms, or what an ermine actually is.) My question is, does she know the truth of Jon Snow’s identity here? What’s her face telling us? Either way, no amount of fur will warm up the frigid chemistry between these two, I’m convinced.

Dreyfuss: Jon Snow (Kit Harington) looks like he just realized Daenerys is his sister … five minutes after they slept together. Now he’s like, “Can this wolf-fur coat hide my shame?” And Daenerys is all, “Brother, your queasiness is very unattractive.”

Is the red thread of Daenerys’ coat a slight nod to the Red God?

Watercutter: Emily, I think you could be right there—yet that would be an actual possible plot detail, so dunno.

To answer Jon’s question, though, I’m not sure if furs can hide shame—and something about that pelt says Stride of Pride to me. If anything, I’d say their faces, and accompanying threads, are giving off an air of “We’re taking the Iron Throne and beating the Lannisters at their incest game while we’re at it.” That’s just me, though.

Speaking of (good) Lannisters, can we talk about Tyrion (Peter Dinklage) for a second?

Dreyfuss: Yes, please! What is going on with his neckerchief?

Watercutter: Right? It … kinda looks like a dickey? And, hey, I got nothing against a good dickey, but it’s friggin’ cold in Winterfell (or wherever he is, someplace frigid). You’re going to need to protect your neck, man. If not from the cold, at least from, I dunno, everyone who probably wants to slash your throat.

Dreyfuss: And the material is hard to identify. It looks like … plastic globules painted blue? Give my man a proper fur-lined neck, please, costume department.

Watercutter: And yet, Cersei has on some kind of medieval shoulder pads. Is she a linebacker now? Is she joining the cast of Alita: Battle Angel to play Motorball? I’m confused. That said, the look is cute. A little less Rhythm Nation than her previous ‘fits, but I’m OK with that.

Dreyfuss: She’s all about the lewk. That’s her whole schtick: projecting strength while not actually being able to defend her throne or her family. She always looks fierce as hell as she’s totally dropping the ball.

Whereas Jon Snow and Danerys continue to look fierce and actually be fierce—bedecked in various furs. It’s interesting to note who is wearing fur and who isn’t—none of the Lannisters, and also not Varys or Davos. What are you trying to tell us, promotional photos?!

Oh, you just want us to remember this show exists? And is coming back to television on April 14? And every character is hot and powerful? But also very cold? Message received.

More Great WIRED Stories

Read More

Hexbyte  Tech News  Wired Facebook’s Top PR Exec Is Leaving the Toughest Job in Tech

Hexbyte Tech News Wired Facebook’s Top PR Exec Is Leaving the Toughest Job in Tech

Hexbyte Tech News Wired

Hexbyte  Tech News  Wired

Caryn Marooney is the latest in a series of high-profile departures from Facebook’s communications department at a time when the company is perpetually under siege.

Lauren Joseph; Getty Images

Following more than two years of constant turbulence for Facebook, the company’s vice president of communications, Caryn Marooney, is leaving the company, Facebook has confirmed. Marooney, who previously cofounded the technology communications firm The Outcast Agency, joined Facebook in 2011 as director of technology communications, after representing the company at Outcast. Most recently, she has been responsible for all global communications. Marooney’s final day is not yet set, but spokesperson Vanessa Chan said she would be staying on to bring her replacement on board.

“She’s been at Facebook for eight years on the payroll,” and worked with the company even before that at Outcast, Chan said. “It’s been a really, really long time. I think she just wants to take a step back.” In 2016, Marooney became head of global communications, a position, she told WIRED, that she accepted while battling cancer. Facebook is now looking internally and externally for her replacement.

Marooney’s departure is just the latest in a string of shakeups at Facebook’s communications department over the past year. In early 2018, the entire company underwent a major executive reorganization. As part of the changes, Marooney began splitting her duties with Rachel Whetsone, who had been hired away from Uber by Facebook the year before. In June, vice president of communications and public policy, Elliot Schrage, announced that he was stepping down from Facebook after a decade there, although he has not departed. Sir Nick Clegg, former deputy prime minister of the United Kingdom, was later hired to lead Facebook’s global policy and communications. Whetstone announced she was leaving for a top job at Netflix in August. At that point, Marooney reassumed responsibility for all global communications, and was reporting to Clegg when she announced her departure Wednesday.

“I’ve decided it’s time to get back to my roots: going deep in tech and product,” Marooney wrote in a Facebook post Wednesday. “With Nick Clegg settled in at Facebook, this felt like the right time to start the transition.”

Chan also confirmed that Debbie Frost, Facebook’s vice president of international policy and communications and the longest tenured employee on Facebook’s communications team, has also announced her exit.1 According to Chan, Frost is retiring. Meanwhile, the company recently hired Sarah O’Brien, formerly of Tesla, to be the company’s vice president of executive communications.

The staffing shuffle underscores the sheer difficulty of defending Facebook’s reputation at a time when it is perpetually under siege. Since 2016, the company has faced a barrage of questions about the rise of fake news, the spread of foreign propaganda, a massive security breach, violations of user privacy, violent conflict fueled by social media myths overseas, and an ever-expanding list of scandals. As one former Facebook employee put it to WIRED, Facebook’s public relations department has become a “crisis communications” shop.

“I think that some folks left just because they got tired of the day-in-day-out criticism, not just media but also from people in Washington,” the former employee said of the recent turnover at Facebook.

Members of Facebook’s PR team have bore the brunt of some of Facebook’s most recent scandals. It was Schrage, for instance, who took the public blame for hiring Definers Public Relations, which conducted opposition research on Facebook’s biggest critics, including billionaire Democratic donor George Soros. It was only after Schrage published a blog post on the subject that Facebook’s chief operating officer Sheryl Sandberg acknowledged she, too, had been aware of Definers’ work.

During this tough time, Facebook also went on a hiring spree, growing from 17,048 employees by the end of 2016 to 35,587 employees at the end of 2018. Much of that increase went toward beefing up Facebook’s safety and security teams, and yet, according to the former employee, the dramatic increase led to “growing pains” across the company. “There would be internal tension over who gets to do what. That was tough to deal with,” the employee says.

“There were definitely executive camps, and this isn’t just comms, this is throughout the entire company,” another source familiar with Facebook’s communications team says. But the source noted that Marooney “did a good job keeping herself out of it.”

It’s still unclear which brave soul will take on the job next. Whoever it is will have their work cut out for them, with a Federal Trade Commission investigation into Facebook’s privacy practices hanging over the company’s head, plans for federal privacy legislation taking shape on Capitol Hill, and a battery of ongoing investigations happening overseas. That’s in addition to the near weekly news stories about how Facebook is prying into people’s private messages for market research or its history of bilking money from unsuspecting children playing games on the platform. The job Marooney is leaving behind just may be the hardest job in tech.

1CORRECTION on 2/6/2019, 1:24 pm ET: This story has been updated to correct Debbie Frost’s title at Facebook. It has also been updated to include a quote from Caryn Marooney’s Facebook post about her departure from the company.

More Great WIRED Stories

Read More

Hexbyte  Tech News  Wired YouTube and Instagram Tots Are the New Child Stars

Hexbyte Tech News Wired YouTube and Instagram Tots Are the New Child Stars

Hexbyte Tech News Wired

Hexbyte  Tech News  Wired

Ryan, of Ryan ToysReview, is a preternaturally cheerful and well-spoken 7-year-old who made $22 million last year testing toys on YouTube.

Michael Drager

“Do you like Instagram?” Bee Fisher asks her son, Tegan Fisher, a 3-year-old Instagram sensation who specializes in posing next to his family’s enormous Newfoundlands. He doesn’t seem to understand the question.

“Is this yogurt cooled down?” Tegan replies.

“Do you like Instagram? Do you like taking pictures?” Bee asks again. Once again, the temperature of yogurt prevails. “He means, ‘Has the yogurt thawed?’ Our fridge froze them,” Bee explains.

Finicky appliances are one of the challenges of RV life, and Bee and her family of five have been living in one for the past few months. They’re on a countrywide tour, taking pictures and meeting fans. “They think we’re on vacation,” she says of Tegan and his brothers. “We’ve tried to explain that this is the family business, but they don’t understand social media at all.”

The kids may not understand social media, but social media definitely gets them—some 200,000 people look at photos of Bee’s brood daily. (Bee and her husband, Josh, took the kids to a packed sports stadium to demonstrate the scale of their fanbase.) The Fisher family feed offers up a winsome, (literally) sanitized version of life with three boys under 8 and two dogs that weigh more than 100 pounds. In place of temper tantrums and cranky spouses, you’ll find a perfectly curated world of smiles and hand-holding. Even snapshots that are powerfully mundane, like the family sitting outside their RV or a kid biting into a pastry the size of his head, have scores of likes. In 2019, that’s enough to convert kiddie cuteness into a commodity.

In recent years, hundreds of kids have risen to bankable internet stardom on Instagram and YouTube. Marketers, ever the wordsmiths, have dubbed them “kidfluencers.” They’re the child stars of the social media age, tiny captains of industry with their own toy lines and cookbooks. On Instagram, families seem to go for a controlled-chaos aesthetic—a Kondo’d Jon & Kate Plus 8. On YouTube, it’s more like late-capitalist Blue’s Clues. And somehow, despite the brand deals and the creeps in the comments and the constant watchfulness of parents’ cameras and the general ickiness our society attaches to living the most innocent years of your life on a public stage, these kids seem all right.

No influencer, adult, child, or animal, is internetting as well as Ryan, of Ryan ToysReview. Ryan—last name undisclosed, location undisclosed—is a preternaturally cheerful and well-spoken 7-year-old who made $22 million last year testing toys on YouTube (many from his own product line, Ryan’s World), trying kiddie science experiments, and doing regular stuff like swimming “in a Super Cold Icy Swimming Pool!!!” for an audience of more than 18 million.

Marketers, ever the wordsmiths, have dubbed them “kidfluencers.” They’re the child stars of the social media age, tiny captains of industry with their own toy lines and cookbooks. On Instagram, families seem to go for a controlled-chaos aesthetic—a Kondo’d Jon & Kate Plus 8. On YouTube, it’s more like late-capitalist Blue’s Clues.

Chris Williams, CEO of Pocket.watch, the studio Ryan is partnered with, assures me that perma-grinning YouTube Ryan is who this kid really is—and that last year’s windfall is no fluke. Traditional kids’ television, according to Williams and to ratings, is dying its too-uncool-for-school death, and it’s only been in the last two years that the industry and advertisers have worked out where their audience went: away from the TV set and onto their smartphones. Now that brands have found a way into this highly impressionable group’s watchtime, and their parents’ wallets, it’s hard to imagine why they’d stop.

If you take their parents at their word, these kids’ fame and fortunes were accidental: Nobody expected, or even seem to have wished, this for them. Ryan has been on YouTube since he was 3, years before “kidfluencing” would become a profitable venture; his parents figured videos would be a good way to share Ryan’s toddlerhood with family who lived abroad. As for the Fishers, their account started as a family photo album that blew up after a 2016 interview with The Daily Mail—from 3,000 to 20,000 followers in one week. Teen chef Amber Kelley, who has become YouTube’s Jamie Oliver, championing fresh and healthy food done so simply even a child can do it, couldn’t imagine anyone but her grandparents watching a stone-faced 9-year-old cook in an oversized chef’s jacket.

Now Kelley has her own cookbook and has dined with Michelle Obama. The Fishers have done sponsored posts for Chick-fil-A. Ryan’s parents refer to their “brand” as a “global franchise.” It all makes one start to wonder, despite assurances from everyone involved, if there’s any stage-parent weirdery here. “I don’t want to have a child 15 years from now sitting in a therapist’s office saying my parents made me take pictures every day,” Bee Fisher says. “If there’re days they’re totally not into it, they don’t have to be.” Well, one exception: “Unless it’s paid work,” Fisher adds. “Then they have to be there. We always have lollipops on those days.”

If incentivizing kids with candy seems pretty normal, it is—these kids are safer and better cared for than you might expect. Oddly, the medium in which they work, the internet, seems to cushion them against Child Starification. Most video shoots don’t take more than a few hours, and a paparazzi-free near-anonymity is attainable; Ryan goes to public school and plays on local sports teams.

“Their fame is not walking down red carpets or selling out shows at Madison Square Garden. It’s numbers on a screen.”

Chris Williams, CEO of studio Pocket.watch

“Their fame is not walking down red carpets or selling out shows at Madison Square Garden,” Williams says. “It’s numbers on a screen.” As long as grown-ups don’t let the pressures of social media stardom pollute their offline relationship with their kids, this form of celebrity seems lower-key and lower-impact than most. Even hiring a project manager for your kid, as Amber Kelley’s mom, Yohko Kelley, did, can be a way to preserve a sense of normalcy. “I don’t want to be nagging her about uploading and nagging her to clean up her room,” Yokho says.

That’s been good for Amber, who notes she can’t say “Oh, it’s just my mom” when her manager asks her to work. “It helped us make sure there was a line between our business life and family life,” she says.

Of course, there are still bad parts to being visible on the internet. A few years ago, Amber’s parents noticed a commenter getting obsessive, even stalker-ish—commenting too soon and too much and too aggressively adoringly, which is bad enough when directed at adult women, horrifying when directed at a 10-year-old. Yokho used it as a teaching moment, going over what is OK to share with subscribers and what isn’t, how to report people, how to avoid getting lured in by trolls. “Now she can handle the haters and creeps,” Yokho says.

Internet weirdos are, in some ways, the least of these parents’ worries. “It’s so much scarier on the road,” Bee Fisher says. She has to go through an entire stranger-danger routine every time they meet up with fans, which has happened in almost every city on their itinerary. “I’ll say, ‘These people will know your name. They will know mommy and daddy’s names. But you don’t go anywhere with them,'” Bee says.

Even with those precautions, they’ve had a few harrowing experiences. Once, they arranged to get dinner with a fan who bought the family expensive gifts. The fan never showed, not even after the family waited 90 minutes in a crowded mall. “I got this awful, bizarre feeling,” Bee says. Bee and Josh became petrified that someone was waiting for the right moment to grab a child or was sneaking into the RV to steal the dogs they’d left behind. Nothing happened, but even two months later and over the phone, the anxiety was apparent.

None of this can possibly last—right? Social media stardom seems to be like childhood itself: The longer you cling to it, the grosser it gets. The Fishers admitted to a certain fatigue. The Kelley family has found a happy medium in being modest micro-influencers: “Maybe we’re not milking it as much as we should, but she’s a kid! This is just one of the many things she should try,” says. “I’m happy she’s learning.”

Ryan’s parents are pursuing a different endgame: a kind of post-child relevance. Their partnership with Pocket.watch has resulted in a lifestyle brand, Ryan’s World, which has more Ryan-approved toys and less Ryan. “We’ve worked hard to create and incorporate animated characters like Combo Panda and Alpha Lexa into our content,” they say. “We recognize he will get older.”

Ryan the idea could continue to exist, in other words, long after Ryan the kid grows up—every parent’s dream.

More Great WIRED Stories

Read More

Hexbyte Tech News Wired What It Takes to Pull Off the Country’s First Online Census

Hexbyte Tech News Wired What It Takes to Pull Off the Country’s First Online Census

Hexbyte Tech News Wired

Hexbyte  Tech News  Wired

Going digital could make the census more inclusive and efficient, but experts fear the Census Bureau is also opening itself up to new risks.

Pal Szilagyi Palko/Getty Images

On a frigid morning in Washington, DC, last week, four staffers from the United States Census Bureau stood shoulder to shoulder on a stage, smiling widely as they soaked in the whoops, whistles, and eager applause from the crowd seated before them. The Esri Federal GIS Conference, an annual event where government employees gather to talk about mapping technology, isn’t exactly what you’d call a rowdy affair. But this year, the Census Bureau representatives—a quartet of geographers and IT professionals—put on a particularly impressive show, demoing a suite of new tech tools for the 2020 census. At least, it was impressive if you knew anything about how the census usually works.

Despite the country’s ballooning population and advances in automation, the crucial process of counting every person living in the United States hasn’t changed all that much in the course of the census’ 230-year history. Until now, it’s mostly come down to distributing paper questionnaires to every home and hiring an army of clipboard-carrying canvassers to knock on the door of anyone who doesn’t respond. In 2020, that will change. For the first time ever, the bureau is asking the majority of people to answer the census online. Not only that, but behind the scenes the entire process of running the census is getting a high-tech facelift.

If the bureau’s plan works, a digital census could make the count more inclusive and, eventually at least, help cut costs—the 2010 census was the most expensive in US history, costing more than $12 billion. But surveying a population of 330 million people in real time using brand new technology is a lot harder than pulling off even the most high-stakes demo. For as many opportunities as this tech-centric approach to the census holds, experts fear the bureau is opening itself up to a range of new risks, from basic functionality and connectivity failures to cybersecurity threats and disinformation campaigns.

Given the ways that census data underpins the fundamentals of democracy, those aren’t risks to be taken lightly. It’s the census, after all, that decides how congressional districts get divvied up, how many seats each state holds in the Electoral College, how the federal budget is allocated, and, ultimately, whether people are fairly and accurately represented by their government.

Standing before a blue-lit background at Esri, the Census Bureau team showed off the goods.

First, there was a tool called BARCA, which uses satellite and aerial imagery to help census workers see how every block in the country has changed over the past decade. They can use that information to more efficiently build out address lists for every home in the United States before the census begins. What used to take two hours for canvassers to do on foot, the bureau representatives said, now takes just two minutes in the office.

Then came ROAM, a mapping product that’s helping the bureau predict where people are least likely to respond to the census using historical and demographic data. With this information, the bureau can target specific community groups, like churches and other organizations, to help spread the word. Both BARCA and ROAM were developed internally at the Bureau.

Finally, the team demoed what is arguably the most transformative tool of all: an app called ECaSE, which some 350,000 census workers will use as they take to the streets on foot next year to follow up with the estimated 60 million households that are expected not to respond to the census the first time around. The app, which was developed in partnership with a contractor, will run on iPhone 8 devices provided by the bureau, and will personalize canvassers’ routes based on their work availability, the languages they speak, and the best time of day to visit each household. The data they collect will be encrypted and automatically uploaded to the Census Bureau’s central repository. The goal is to replace, or at least radically reduce, the 17 million pages of paper maps that the bureau printed out for the 2010 census and the 50 million paper questionnaires that field workers had to tote around with them. And because the tools are expected to make field workers more efficient, the bureau expects to hire roughly half as many people as it did in 2010.

“There’s a good reason a lot of information is becoming digitized. It’s efficient and useful. But it also creates vulnerabilities.”

Josh Geltzer, Georgetown Law

Little wonder the audience seemed pleased with the presentation. And yet, thanks to years of budget cuts and a series of scaled-back field tests, some fear the Census Bureau and the broader US government are ill-equipped to handle any new issues that could arise as a result of the high-tech census, particularly at a time when hackers and propagandists seem to be working overtime to undermine American institutions.

“There’s a good reason a lot of information is becoming digitized. It’s efficient and useful,” says Josh Geltzer, executive director of the Institute for Constitutional Advocacy and Protection at Georgetown Law. “But it also creates vulnerabilities, and we’re reminded of that virtually every week in the form of a hack or data being used in ways it’s not supposed to be.” Last year, Geltzer and a group of cybersecurity experts sent a letter to the Census Bureau expressing their concerns and asking for answers about how the whole operation will work.

The bureau is well aware of the risks it faces, and it’s spent years developing defenses against them. The data will be encrypted, and both the field staff and office staff who access it will only be able to log into the system using two-factor authentication. The bureau is also working with the Department of Homeland Security to implement a system called EINSTEIN 3A, which will monitor government networks for malicious activity, and to communicate with the intelligence community about specific threats. In a recent program review, the agency said it would conduct a bug bounty program to test public-facing systems.

“From the moment we collect your responses, our goal—and legal obligation—is to keep them safe,” the Census Bureau said in a statement.

But the bureau’s tech team has also acknowledged that some external threats aren’t fully within their control, like, for instance, the threat posed by hundreds of millions of respondents using unsecured, potentially corrupted computers, phones, and tablets to report their answers, leaving those answers open to manipulation. The bureau has also warned that phishing attempts, where fraudsters contact people posing as the Census Bureau, could trick people into divulging sensitive information about themselves. The same goes for bogus websites that imitate the bureau. And, in the age of social media, there’s always the risk that a dedicated disinformation campaign could attempt to mislead people about the Census or undermine their faith in the process.

“Some of these challenges are new for the 2020 census,” the bureau’s deputy director Ron Jarmin said onstage at the Esri conference. “This is a foundational thing for our democracy. Much like elections, people that want to sow discord in our country might try to mess with the census.”

The bureau says it’s been working with companies like Google, Facebook, Twitter, and Microsoft to counter this sort of behavior and flag it before it’s too late. But as recent examples of election meddling around the world have shown, there are limits to what the government, or these companies, can do to totally mitigate these threats. “While we cannot control bad actors, we are working with partners to identify phishing attempts and website spoofing,” the bureau says.

According to John Thompson, who served as director of the Census Bureau from 2013 through May 2017, the most important thing the government can do is educate the public about what the Census Bureau will and won’t ask of them. It won’t, for example, ask people for their social security numbers or attempt to contact them by phone or email.

The problem is, the bureau has been woefully underfunded for years, an issue that has far-reaching consequences for census preparation.

Usually, the Census Bureau sees its budget increase in years leading up to each decennial count. Between 2014 and 2017, however, funding was essentially flat. Thompson says that forced the agency to defer a number of programs for years, including research on its paid advertising program, which helps inform the public about why it’s important to respond to the census and offers assurances about the security of census data.

“That’s an incredibly important program,” Thompson says. “A lot of stakeholders were becoming concerned it was being deferred.”

The bureau says it’s on track to begin running ads in January 2020, two months before the first census invitations go out in March. And while early research may have been deferred, the bureau has since conducted surveys and focus groups that will help the agency understand people’s mindset toward the census.

Research on advertising wasn’t the only thing that got cut during the lean days. Due to budget restraints, the bureau was forced cancel a series of planned field tests in 2017 and dramatically reduce the scope of its “dress rehearsal” test in 2018, which was supposed to replicate the full census in a few key geographic areas. Originally, the 2018 test was to be carried out in rural West Virginia; Providence, Rhode Island; and tribal lands in Washington State. In the end, the Census Bureau eliminated all its end-to-end tests except the one in Rhode Island. That meant the agency never got to see how the full system would function in a rural environment.

“It was a difficult decision, but it was all we could do,” Thompson says.

The lack of comprehensive testing in remote locations presents a serious possibility that the system simply won’t work properly in areas that are on the wrong side of the digital divide. “There’s been less practice for this than even the Census Bureau thought there should be,” Geltzer says. “Given it’s going to scale up dramatically for the real thing, the lack of practice is a concerning thing.”

The bureau did test what’s known as address canvassing—the process of building the address list—in West Virginia and Washington. This allowed field staff to at least try out some of the tools they’ll use during the real census. According to the bureau, those tests did turn up connectivity issues, motivating the agency to tweak the technology so that now, the bureau says, “if a census taker is in a low connectivity area, the data they collect is stored and encrypted until the device is connected to the Internet.”

As an additional backstop, the Census Bureau will also mail out paper questionnaires to the 20 percent of households in regions with limited connectivity or with older, less tech savvy populations. It relies heavily on data from the annual American Community Survey to assess where these populations live. These people will still have the option of completing the census online if they’re able. Every household will also have the opportunity to answer by phone for the first time.

For all of the bureau’s contingency plans, fancy new tools, and slick demos, there are plenty of recent examples of what could go wrong when invitations to respond begin going out across the country in March of 2020, says Terri Ann Lowenthal, former staff director of the House of Representatives’ census oversight subcommittee.

Healthcare.gov famously crashed after only a few thousand people tried to apply for health insurance. Traffic to the census response website will be several orders of magnitude larger, Lowenthal says.

Then there was the Australia debacle. On August 9, 2016, millions of Australians tried to complete their country’s first online census, only to receive an error message on the government website. Australia’s Bureau of Statistics tweeted that the site was experiencing an outage and hoped to have an update by morning. It wound up taking days to recover from what the bureau said was a distributed denial of service attack against the website. The total cost of the setback was more than $21 million.

“The Census Bureau must pull off the census on time, according to a minute-by-minute schedule,” Lowenthal says. “If something goes wrong, the entire process is not only disrupted but potentially undermined.”

More Great WIRED Stories

Read More